Ciscoes (Coregonus, subgenus Leucichthys) of the Laurentian Great Lakes and Lake Nipigon

By: , and 

Links

Abstract

This study of the ciscoes (Coregonus, subgenus Leucichthys) of the Great Lakes and Lake Nipigon represents a furtherance through 2015 of field research initiated by Walter Koelz in 1917 and continued by Stanford Smith in the mid-1900s—a period spanning nearly a century. Like Koelz’s study, this work contains information on taxonomy, geographical distribution, ecology, and status of species (here considered forms). Of the seven currently recognized forms (C. artedi, C. hoyi, C. johannae, C. kiyi, C. nigripinnis, C. reighardi, and C. zenithicus) described by Koelz as major in his 1929 monograph, two (C. johannae and C. reighardi) are extinct. In addition, C. alpenae, described by Koelz but subsequently synonymized with C. zenithicus, although extinct, is recognized as valid making a total of eight major forms. Six of these forms, all but C. artedi and C. hoyi, have been lost from Lake Michigan, and seven have been lost from Lake Huron, leaving in Lake Huron only C. artedi and an introgressed deepwater form that we term a hybrid swarm. C. artedi appears, like its sister form C. alpenae, to have been lost from Lake Erie. Only C. artedi remains extant in Lake Ontario, its three sister forms (C. hoyi, C. kiyi, and C. reighardi) having disappeared long ago.

Lakes Superior and Nipigon have retained their original species flocks consisting of four forms each: C. artedi, C. hoyi, and C. zenithicus in both lakes; C. kiyi in Lake Superior; and C. nigripinnis in Lake Nipigon. Morphological deviations from the morphotypes described by Koelz have been modest in contemporary samples. Overall, C. kiyi and C. artedi were the most morphologically stable forms while C. hoyi, C. nigripinnis, and C. zenithicus were the least stable. Although contemporary populations of C. artedi from Lakes Michigan and Huron are highly diverged from the morphotypes described by Koelz, the contemporary samples were of undescribed deep-bodied forms unlikely to have been sampled by Koelz because of their association with bays. Of the two intact species flocks, Lake Nipigon’s was much less stable morphologically than Lake Superior’s even though Lake Nipigon is far less disturbed. Two priorities for research are determining the role of developmental plasticity in morphological divergence, especially within C. zenithicus of Lake Superior, and the basis for morphological divergence in C. artedi.

Study Area

Additional publication details

Publication type Report
Publication Subtype Other Report
Title Ciscoes (Coregonus, subgenus Leucichthys) of the Laurentian Great Lakes and Lake Nipigon
Year Published 2016
Language English
Publisher Great Lakes Fishery Commission
Contributing office(s) Great Lakes Science Center
Description v, 141 p.
Larger Work Title Miscellaneous Publication 2016-01
Country Canada, United States
Other Geospatial Lake Nipigon, Laurentian Great Lakes