Role for Fe(III) minerals in nitrate-dependent microbial U(IV) oxidation

Environmental Science & Technology
By: , and 

Links

Abstract

Microbiological reduction of soluble U(VI) to insoluble U(IV) is a means of preventing the migration of that element in groundwater, but the presence of nitrate in U(IV)-containing sediments leads to U(IV) oxidation and remobilizaton. Nitrite or iron(III) oxyhydroxides may oxidize U(IV) under nitrate-reducing conditions, and we determined the rate and extent of U(IV) oxidation by these compounds. Fe(III) oxidized U(IV) at a greater rate than nitrite (130 and 10 μM U(IV)/day, respectively). In aquifer sediments, Fe(III) may be produced during microbial nitrate reduction by oxidation of Fe(II) with nitrite, or by enzymatic Fe(II) oxidation coupled to nitrate reduction. To determine which of these mechanisms was dominant, we isolated a nitrate-dependent acetate- and Fe(II)-oxidizing bacterium from a U(VI)- and nitrate-contaminated aquifer. This organism oxidized U(IV) at a greater rate and to a greater extent under acetate-oxidizing (where nitrite accumulated to 50 mM) than under Fe(II)-oxidizing conditions. We show that the observed differences in rate and extent of U(IV) oxidation are due to mineralogical differences between Fe(III) produced by reaction of Fe(II) with nitrite (amorphous) and Fe(III) produced enzymatically (goethite or lepidocrocite). Our results suggest the mineralogy and surface area of Fe(III) minerals produced under nitrate-reducing conditions affect the rate and extent of U(IV) oxidation. These results may be useful for predicting the stability of U(IV) in aquifers.

Publication type Article
Publication Subtype Journal Article
Title Role for Fe(III) minerals in nitrate-dependent microbial U(IV) oxidation
Series title Environmental Science & Technology
DOI 10.1021/es048906i
Volume 39
Issue 8
Year Published 2005
Language English
Publisher American Chemical Society
Contributing office(s) Toxic Substances Hydrology Program
Description 8 p.
First page 2529
Last page 2536
Google Analytic Metrics Metrics page
Additional publication details