Phylogenetic relationships within the Alcidae (Charadriiformes: Aves) inferred from total molecular evidence

Molecular Biology and Evolution
By: , and 

Links

Abstract

The Alcidae is a unique assemblage of Northern Hemisphere seabirds that forage by "flying" underwater. Despite obvious affinities among the species, their evolutionary relationships are unclear. We analyzed nucleotide sequences of 1,045 base pairs of the mitochondrial cytochrome b gene and allelic profiles for 37 allozyme loci in all 22 extant species. Trees were constructed on independent and combined data sets using maximum parsimony and distance methods that correct for superimposed changes. Alternative methods of analysis produced only minor differences in relationships that were supported strongly by bootstrapping or standard error tests. Combining sequence and allozyme data into a single analysis provided the greatest number of relationships receiving strong support. Addition of published morphological and ecological data did not improve support for any additional relationship. All analyses grouped species into six distinct lineages: (1) the dovekie (Alle alle) and auks, (2) guillemots, (3) brachyramphine murrelets, (4) synthliboramphine murrelets, (5) true auklets, and (6) the rhinoceros auklet (Cerorhinca monocerata) and puffins. The two murres (genus Uria) were sister taxa, and the black guillemot (Cepphus grylle) was basal to the other guillemots. The Asian subspecies of the marbled murrelet (Brachyramphus marmoratus perdix) was the most divergent brachyramphine murrelet, and two distinct lineages occurred within the synthliboramphine murrelets. Cassin's auklet (Ptychoramphus aleuticus) and the rhinoceros auklet were basal to the other auklets and puffins, respectively, and the Atlantic (Fratercula arctica) and horned (Fratercula corniculata) puffins were sister taxa. Several relationships among tribes, among the dovekie and auks, and among the auklets could not be resolved but resembled "star" phylogenies indicative of adaptive radiations at different depths within the trees.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Phylogenetic relationships within the Alcidae (Charadriiformes: Aves) inferred from total molecular evidence
Series title Molecular Biology and Evolution
DOI 10.1093/oxfordjournals.molbev.a025595
Volume 13
Issue 2
Year Published 1996
Language English
Publisher Oxford Academic
Contributing office(s) Alaska Science Center
Description 9 p.
First page 359
Last page 367