Land–atmosphere feedbacks amplify aridity increase over land under global warming

Nature Climate Change
By: , and 



The response of the terrestrial water cycle to global warming is central to issues including water resources, agriculture and ecosystem health. Recent studies indicate that aridity, defined in terms of atmospheric supply (precipitation, P) and demand (potential evapotranspiration, Ep) of water at the land surface, will increase globally in a warmer world. Recently proposed mechanisms for this response emphasize the driving role of oceanic warming and associated atmospheric processes. Here we show that the aridity response is substantially amplified by land–atmosphere feedbacks associated with the land surface’s response to climate and CO2 change. Using simulations from the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we show that global aridity is enhanced by the feedbacks of projected soil moisture decrease on land surface temperature, relative humidity and precipitation. The physiological impact of increasing atmospheric CO2 on vegetation exerts a qualitatively similar control on aridity. We reconcile these findings with previously proposed mechanisms by showing that the moist enthalpy change over land is unaffected by the land hydrological response. Thus, although oceanic warming constrains the combined moisture and temperature changes over land, land hydrology modulates the partitioning of this enthalpy increase towards increased aridity.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Land–atmosphere feedbacks amplify aridity increase over land under global warming
Series title Nature Climate Change
DOI 10.1038/nclimate3029
Volume 6
Year Published 2016
Language English
Publisher Nature
Contributing office(s) National Research Program - Eastern Branch
Description 6 p.
First page 869
Last page 874