Anaerobic methane oxidation in a landfill-leachate plume

Environmental Science & Technology
By: , and 

Links

Abstract

The alluvial aquifer adjacent to Norman Landfill, OK, provides an excellent natural laboratory for the study of anaerobic processes impacting landfill-leachate contaminated aquifers. We collected groundwaters from a transect of seven multilevel wells ranging in depth from 1.3 to 11 m that were oriented parallel to the flow path. The center of the leachate plume was characterized by (1) high alkalinity and elevated concentrations of total dissolved organic carbon, reduced iron, and methane, and (2) negligible oxygen, nitrate, and sulfate concentrations. Methane concentrations and stable carbon isotope (δ13C) values suggest anaerobic methane oxidation was occurring within the plume and at its margins. Methane δ13C values increased from about −54‰ near the source to >−10‰ downgradient and at the plume margins. The isotopic fractionation associated with this methane oxidation was −13.6 ± 1.0‰. Methane 13C enrichment indicated that 80−90% of the original landfill methane was oxidized over the 210-m transect. First-order rate constants ranged from 0.06 to 0.23 per year, and oxidation rates ranged from 18 to 230 μM/y. Overall, hydrochemical data suggest that a sulfate reducer-methanogen consortium may mediate this methane oxidation. These results demonstrate that natural attenuation through anaerobic methane oxidation can be an important sink for landfill methane in aquifer systems.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Anaerobic methane oxidation in a landfill-leachate plume
Series title Environmental Science & Technology
DOI 10.1021/es015695y
Volume 36
Issue 11
Year Published 2002
Language English
Publisher American Chemical Society
Contributing office(s) Toxic Substances Hydrology Program
Description 7 p.
First page 2436
Last page 2442