Resolving terrestrial ecosystem processes along a subgrid topographic gradient for an earth-system model

Hydrology and Earth System Sciences
By: , and 

Links

Abstract

Soil moisture is a crucial control on surface water and energy fluxes, vegetation, and soil carbon cycling. Earth-system models (ESMs) generally represent an areal-average soil-moisture state in gridcells at scales of 50–200 km and as a result are not able to capture the nonlinear effects of topographically-controlled subgrid heterogeneity in soil moisture, in particular where wetlands are present. We addressed this deficiency by building a subgrid representation of hillslope-scale topographic gradients, TiHy (Tiled-hillslope Hydrology), into the Geophysical Fluid Dynamics Laboratory (GFDL) land model (LM3). LM3-TiHy models one or more representative hillslope geometries for each gridcell by discretizing them into land model tiles hydrologically coupled along an upland-to-lowland gradient. Each tile has its own surface fluxes, vegetation, and vertically-resolved state variables for soil physics and biogeochemistry. LM3-TiHy simulates a gradient in soil moisture and water-table depth between uplands and lowlands in each gridcell. Three hillslope hydrological regimes appear in non-permafrost regions in the model: wet and poorly-drained, wet and well-drained, and dry; with large, small, and zero wetland area predicted, respectively. Compared to the untiled LM3 in stand-alone experiments, LM3-TiHy simulates similar surface energy and water fluxes in the gridcell-mean. However, in marginally wet regions around the globe, LM3-TiHy simulates shallow groundwater in lowlands, leading to higher evapotranspiration, lower surface temperature, and higher leaf area compared to uplands in the same gridcells. Moreover, more than four-fold larger soil carbon concentrations are simulated globally in lowlands as compared with uplands. We compared water-table depths to those simulated by a recent global model-observational synthesis, and we compared wetland and inundated areas diagnosed from the model to observational datasets. The comparisons demonstrate that LM3-TiHy has the capability to represent some of the controls of these hydrological variables, but also that improvement in parameterization and input datasets are needed for more realistic simulations. We found large sensitivity in model-diagnosed wetland and inundated area to the depth of conductive soil and the parameterization of macroporosity. With improved parameterization and inclusion of peatland biogeochemical processes, the model could provide a new approach to investigating the vulnerability of Boreal peatland carbon to climate change in ESMs.

Publication type Article
Publication Subtype Journal Article
Title Resolving terrestrial ecosystem processes along a subgrid topographic gradient for an earth-system model
Series title Hydrology and Earth System Sciences
DOI 10.5194/hessd-11-8443-2014
Volume 11
Year Published 2014
Language English
Publisher European Geosciences Union
Contributing office(s) National Research Program - Eastern Branch
Description 50 p.
First page 8443
Last page 8492
Google Analytic Metrics Metrics page
Additional publication details