Mitigating future avian malaria threats to Hawaiian forest birds from climate change

PLoS ONE
By: , and 

Links

Abstract

Avian malaria, transmitted by Culex quinquefasciatus mosquitoes in the Hawaiian Islands, has been a primary contributor to population range limitations, declines, and extinctions for many endemic Hawaiian honeycreepers. Avian malaria is strongly influenced by climate; therefore, predicted future changes are expected to expand transmission into higher elevations and intensify and lengthen existing transmission periods at lower elevations, leading to further population declines and potential extinction of highly susceptible honeycreepers in mid- and high-elevation forests. Based on future climate changes and resulting malaria risk, we evaluated the viability of alternative conservation strategies to preserve endemic Hawaiian birds at mid and high elevations through the 21st century. We linked an epidemiological model with three alternative climatic projections from the Coupled Model Intercomparison Project to predict future malaria risk and bird population dynamics for the coming century. Based on climate change predictions, proposed strategies included mosquito population suppression using modified males, release of genetically modified refractory mosquitoes, competition from other introduced mosquitoes that are not competent vectors, evolved malaria-tolerance in native honeycreepers, feral pig control to reduce mosquito larval habitats, and predator control to improve bird demographics. Transmission rates of malaria are predicted to be higher than currently observed and are likely to have larger impacts in high-elevation forests where current low rates of transmission create a refuge for highly-susceptible birds. As a result, several current and proposed conservation strategies will be insufficient to maintain existing forest bird populations. We concluded that mitigating malaria transmission at high elevations should be a primary conservation goal. Conservation strategies that maintain highly susceptible species like Iiwi (Drepanis coccinea) will likely benefit other threatened and endangered Hawai’i species, especially in high-elevation forests. Our results showed that mosquito control strategies offer potential long-term benefits to high elevation Hawaiian honeycreepers. However, combined strategies will likely be needed to preserve endemic birds at mid elevations. Given the delay required to research, develop, evaluate, and improve several of these currently untested conservation strategies we suggest that planning should begin expeditiously.

Publication type Article
Publication Subtype Journal Article
Title Mitigating future avian malaria threats to Hawaiian forest birds from climate change
Series title PLoS ONE
DOI 10.1371/journal.pone.0168880
Volume 12
Issue 1
Year Published 2017
Language English
Publisher PLOS
Contributing office(s) Coop Res Unit Leetown
Description e0168880; 25 p.
First page 1
Last page 25
Google Analytic Metrics Metrics page
Additional publication details