Reevaluation of the Crooked Ridge River- Early Pleistocene (ca. 2 Ma) age and origin of the White Mesa Alluvium, northeastern Arizona

By: , and 



Essential features of the previously named and described Miocene Crooked Ridge River in northeastern Arizona (USA) are reexamined using new geologic and geochronologic data. Previously it was proposed that Cenozoic alluvium at Crooked Ridge and southern White Mesa was pre–early Miocene, the product of a large, vigorous late Paleogene river draining the 35–23 Ma San Juan Mountains volcanic field of southwestern Colorado. The paleoriver probably breeched the Kaibab uplift and was considered important in the early evolution of the Colorado River and Grand Canyon. In this paper, we reexamine the character and age of these Cenozoic deposits. The alluvial record originally used to propose the hypothetical paleoriver is best exposed on White Mesa, providing the informal name White Mesa alluvium. The alluvium is 20–50 m thick and is in the bedrock-bound White Mesa paleovalley system, which comprises 5 tributary paleochannels. Gravel composition, detrital zircon data, and paleochannel orientation indicate that sediment originated mainly from local Cretaceous bedrock north, northeast, and south of White Mesa. Sedimentologic and fossil evidence imply alluviation in a low-energy suspended sediment fluvial system with abundant fine-grained overbank deposits, indicating a local channel system rather than a vigorous braided river with distant headwaters. The alluvium contains exotic gravel clasts of Proterozoic basement and rare Oligocene volcanic clasts as well as Oligocene–Miocene detrital sanidine related to multiple caldera eruptions of the San Juan Mountains and elsewhere. These exotic clasts and sanidine likely came from ancient rivers draining the San Juan Mountains. However, in this paper we show that the White Mesa alluvium is early Pleistocene (ca. 2 Ma) rather than pre–early Miocene. Combined 40Ar/39Ar dating of an interbedded tuff and detrital sanidine ages show that the basal White Mesa alluvium was deposited at 1.993 ± 0.002 Ma, consistent with a detrital sanidine maximum depositional age of 2.02 ± 0.02 Ma. Geomorphic relations show that the White Mesa alluvium is older than inset gravels that are interbedded with 1.2–0.8 Ma Bishop–Glass Mountain tuff. The new ca. 2 Ma age for the White Mesa alluvium refutes the hypothesis of a large regional Miocene(?) Crooked Ridge paleoriver that predated carving of the Grand Canyon. Instead, White Mesa paleodrainage was the northernmost extension of the ancestral Little Colorado River drainage basin. This finding is important for understanding Colorado River evolution because it provides a datum for quantifying rapid post–2 Ma regional denudation of the Grand Canyon region.

Publication type Article
Publication Subtype Journal Article
Title Reevaluation of the Crooked Ridge River- Early Pleistocene (ca. 2 Ma) age and origin of the White Mesa Alluvium, northeastern Arizona
Series title Geosphere
DOI 10.1130/GES01124.1
Volume 12
Issue 3
Year Published 2016
Language English
Publisher Geological Society of America
Contributing office(s) Geology, Minerals, Energy, and Geophysics Science Center
Description 22 p.
First page 768
Last page 789
Country United States
State Arizona
Google Analytic Metrics Metrics page
Additional publication details