Skip to main content
U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Land use and carbon dynamics in the southeastern United States from 1992 to 2050

Environmental Research Letters
By: , and 



Land use and land cover change (LUCC) plays an important role in determining the spatial distribution, magnitude, and temporal change of terrestrial carbon sources and sinks. However, the impacts of LUCC are not well understood and quantified over large areas. The goal of this study was to quantify the spatial and temporal patterns of carbon dynamics in various terrestrial ecosystems in the southeastern United States from 1992 to 2050 using a process-based modeling system and then to investigate the impacts of LUCC. Spatial LUCC information was reconstructed and projected using the FOREcasting SCEnarios of future land cover (FORE-SCE) model according to information derived from Landsat observations and other sources. Results indicated that urban expansion (from 3.7% in 1992 to 9.2% in 2050) was expected to be the primary driver for other land cover changes in the region, leading to various declines in forest, cropland, and hay/pasture. The region was projected to be a carbon sink of 60.4 gC m−2 yr−1 on average during the study period, primarily due to the legacy impacts of large-scale conversion of cropland to forest that happened since the 1950s. Nevertheless, the regional carbon sequestration rate was expected to decline because of the slowing down of carbon accumulation in aging forests and the decline of forest area.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Land use and carbon dynamics in the southeastern United States from 1992 to 2050
Series title Environmental Research Letters
DOI 10.1088/1748-9326/8/4/044022
Volume 8
Year Published 2013
Language English
Publisher IOP Science
Contributing office(s) Earth Resources Observation and Science (EROS) Center
Description Article 044022; 9 p.
First page 1
Last page 9
Country United States
Google Analytic Metrics Metrics page
Additional publication details