Acidity and Alkalinity in mine drainage: Practical considerations

By:  and 

Links

Abstract

In this paper, we emphasize that the Standard Method hot peroxide treatment procedure for acidity determination (hot acidity) directly measures net acidity or net alkalinity, but that more than one water-quality measure can be useful as a measure of the severity of acid mine drainage. We demonstrate that the hot acidity is related to the pH, alkalinity, and dissolved concentrations of Fe, Mn, and Al in fresh mine drainage. We show that the hot acidity accurately indicates the potential for pH to decrease to acidic values after complete oxidation of Fe and Mn, and it indicates the excess alkalinity or that required for neutralization of the sample. We show that the hot acidity method gives consistent, interpretable results on fresh or aged samples.

Regional data for mine-drainage quality in Pennsylvania indicated the pH of fresh samples was predominantly acidic (pH 2.5 to 4) or near neutral (pH 6 to 7); approximately 25 percent of the samples had intermediate pH values. This bimodal frequency distribution of pH was distinctive for fully oxidized samples; oxidized samples had acidic or near-neutral pH, only. Samples that had nearneutral pH after oxidation had negative hot acidity; samples that had acidic pH after oxidation had positive hot acidity. Samples with comparable pH values had variable hot acidities owing to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. The hot acidity was comparable to net acidity computed on the basis of initial pH and concentrations of Fe, Mn, and Al minus the initial alkalinity. Acidity computed from the pH and dissolved metals concentrations, assuming equivalents of 2 per mole of Fe and Mn and 3 per mole of Al, was comparable to that computed on the basis of aqueous species and FeII/FeIII. Despite changes in the pH, alkalinity, and metals concentrations, the hot acidities were comparable for fresh and aged samples. Thus, meaningful “net” acidity can be determined from a measured hot acidity or by calculation from the pH, alkalinity, and dissolved metals concentrations. Together, these water-quality data can be useful for evaluating the potential for toxicity, corrosion, or encrustation and can be helpful for determining the appropriate remediation. By demonstrating the measurements on fresh and aged samples, we hope to encourage (1) consistent use of the hot peroxide treatment procedure for acidity determination and (2) consistent reporting of negative acidity values.

Publication type Conference Paper
Publication Subtype Conference Paper
Title Acidity and Alkalinity in mine drainage: Practical considerations
DOI 10.21000/JASMR04010334
Year Published 2004
Language English
Description 32 p.
Larger Work Type Conference Paper
Larger Work Subtype Conference Paper
Larger Work Title Proceedings America Society of Mining and Reclamation
First page 334
Last page 365
Conference Title 2004 National Meeting of the American Society of Mining and Reclamation and the 25th West Virginia Surface Mine Drainage Task Force
Conference Location Morgantown, WV
Conference Date April 18-24, 2004
Country United States
State Pennsylvania
Google Analytic Metrics Metrics page
Additional publication details