An intercomparison of three methods for the large-scale isolation of oceanic dissolved organic matter

Marine Chemistry
By: , and 

Links

Abstract

Dissolved organic matter (DOM) was isolated from large volumes of deep (674 m) and surface (21 m) ocean water via reverse osmosis/electrodialysis (RO/ED) and two solid-phase extraction (SPE) methods (XAD-8/4 and PPL) at the Natural Energy Laboratory of Hawaii Authority (NELHA). By applying the three methods to common water samples, the efficiencies of XAD, PPL and RO/ED DOM isolation were compared. XAD recovered 42% of dissolved organic carbon (DOC) from deep water (25% with XAD-8; 17% with XAD-4) and 30% from surface water (16% with XAD-8; 14% with XAD-4). PPL recovered 61 ± 3% of DOC from deep water and 61% from surface water. RO/ED recovered 82 ± 3% of DOC from deep water, 14 ± 3% of which was recovered in a sodium hydroxide rinse, and 75 ± 5% of DOC from surface water, with 12 ± 2% in the sodium hydroxide rinse. The highest recoveries of all were achieved by the sequential isolation of DOC, first with PPL and then via RO/ED. This combined technique recovered 98% of DOC from a deep water sample and 101% of DOC from a surface water sample. In total, 1.9, 10.3 and 1.6 g-C of DOC were collected via XAD, PPL and RO/ED, respectively. Rates of DOC recovery using the XAD, PPL and RO/ED methods were 10, 33 and 10 mg-C h− 1, respectively. Based upon C/N ratios, XAD isolates were heavily C-enriched compared with water column DOM, whereas RO/ED and PPL  RO/ED isolate C/N values were most representative of the original DOM. All techniques are suitable for the isolation of large amounts of DOM with purities suitable for most advanced analytical techniques. Coupling PPL and RO/ED techniques may provide substantial progress in the search for a method to quantitatively isolate oceanic DOC, bringing the entirety of the DOM pool within the marine chemist's analytical window.

Publication type Article
Publication Subtype Journal Article
Title An intercomparison of three methods for the large-scale isolation of oceanic dissolved organic matter
Series title Marine Chemistry
DOI 10.1016/j.marchem.2014.01.012
Volume 161
Year Published 2014
Language English
Publisher Elsevier
Contributing office(s) National Research Program - Central Branch
Description 6 p.
First page 14
Last page 19
Google Analytic Metrics Metrics page
Additional publication details