Robert Graves
David Gill
Scott Callaghan
Phillip J. Maechling
Maren Bose
2014
<p><span>Real-time applications such as earthquake early warning (EEW) typically use empirical ground-motion prediction equations (GMPEs) along with event magnitude and source-to-site distances to estimate expected shaking levels. In this simplified approach, effects due to finite-fault geometry, directivity and site and basin response are often generalized, which may lead to a significant under- or overestimation of shaking from large earthquakes (</span><i>M</i><span> > 6.5) in some locations. For enhanced site-specific ground-motion predictions considering 3-D wave-propagation effects, we develop support vector regression (SVR) models from the SCEC CyberShake low-frequency (<0.5 Hz) and broad-band (0–10 Hz) data sets. CyberShake encompasses 3-D wave-propagation simulations of >415 000 finite-fault rupture scenarios (6.5 ≤<span> </span></span><i>M</i><span><span> </span>≤ 8.5) for southern California defined in UCERF 2.0. We use CyberShake to demonstrate the application of synthetic waveform data to EEW as a ‘proof of concept’, being aware that these simulations are not yet fully validated and might not appropriately sample the range of rupture uncertainty. Our regression models predict the maximum and the temporal evolution of instrumental intensity (MMI) at 71 selected test sites using only the hypocentre, magnitude and rupture ratio, which characterizes uni- and bilateral rupture propagation. Our regression approach is completely data-driven (where here the CyberShake simulations are considered data) and does not enforce pre-defined functional forms or dependencies among input parameters. The models were established from a subset (∼20 per cent) of CyberShake simulations, but can explain MMI values of all >400 k rupture scenarios with a standard deviation of about 0.4 intensity units. We apply our models to determine threshold magnitudes (and warning times) for various active faults in southern California that earthquakes need to exceed to cause at least ‘moderate’, ‘strong’ or ‘very strong’ shaking in the Los Angeles (LA) basin. These thresholds are used to construct a simple and robust EEW algorithm: to declare a warning, the algorithm only needs to locate the earthquake and to verify that the corresponding magnitude threshold is exceeded. The models predict that a relatively moderate<span> </span></span><i>M</i><span>6.5–7 earthquake along the Palos Verdes, Newport-Inglewood/Rose Canyon, Elsinore or San Jacinto faults with a rupture propagating towards LA could cause ‘very strong’ to ‘severe’ shaking in the LA basin; however, warning times for these events could exceed 30 s.</span></p>
application/pdf
10.1093/gji/ggu198
en
Oxford Academic
CyberShake-derived ground-motion prediction models for the Los Angeles region with application to earthquake early warning
article