Oxygen and U-Th isotopes and the timescales of hydrothermal exchange and melting in granitoid wall rocks at Mount Mazama, Crater Lake, Oregon

Geochimica et Cosmochimica Acta
By: , and 

Links

Abstract

We report new whole rock U-Th and in-situ oxygen isotope compositions for partially melted (0–50 vol% melt), low-δ18O Pleistocene granitoid blocks ejected during the ∼7.7 ka caldera-forming eruption of Mt. Mazama (Crater Lake, Oregon). The blocks are interpreted to represent wall rocks of the climactic magma chamber that, prior to eruption, experienced variable amounts of exchange with meteoric hydrothermal fluids and subsequent partial melting. U-Th and oxygen isotope results allow us to examine the timescales of hydrothermal circulation and partial melting, and provide an “outside in” perspective on the buildup to the climactic eruption of Mt. Mazama. Oxygen isotope compositions measured in the cores and rims of individual quartz (n = 126) and plagioclase (n = 91) crystals, and for transects across ten quartz crystals, document zonation in quartz (Δ18OCore-Rim ≤ 0.1–5.5‰), but show homogeneity in plagioclase (Δ18OCore-Rim ≤ ±0.8‰). We propose that oxygen isotope zonation in quartz records hydrothermal exchange followed by high-temperature exchange in response to partial melting caused by injection of basaltic to andesitic recharge magma into the deeper portions of the chamber. Results of modeling of oxygen diffusion in quartz indicates that hydrothermal exchange in quartz occurred over a period of ∼1000–63,000 years. Models also suggest that the onset of melting of the granitoids occurred a minimum of ∼10–200 years prior to the Mazama climactic eruption, an inference which is broadly consistent with results for magnetite homogenization and for Zr diffusion in melt previously reported by others.

Uranium-thorium isotope compositions of most granitoid blocks are in 238U excess, and are in agreement with a 238U enriched array previously measured for volcanic rocks at Mt. Mazama. Uranium excess in the granitoids is likely due to enrichment via hydrothermal circulation, given their low δ18O values. The sample with the highest U excess (≥5.8%) also has the most 18O isotope depletion (average δ18Oplag = −4.0‰). The granitoids are a probable assimilant and source of U excess in volcanic rocks from Mt. Mazama. Two granitoids have Th excess and low δ18O values, interpreted to record leaching of U during hydrothermal alteration. A U-Th isochron based on the U excess array of the granitoids and volcanic rocks indicates that hydrothermal circulation initiated ∼40–75 kyrs before the climactic eruption, potentially marking the initiation of a persistent upper-crustal magma chamber. The U-Th ages are consistent with the maximum timescales inferred for hydrothermal alteration based on oxygen isotope zoning in quartz.

Study Area

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Oxygen and U-Th isotopes and the timescales of hydrothermal exchange and melting in granitoid wall rocks at Mount Mazama, Crater Lake, Oregon
Series title Geochimica et Cosmochimica Acta
DOI 10.1016/j.gca.2017.04.043
Volume 213
Year Published 2017
Language English
Publisher Elsevier
Contributing office(s) Volcano Science Center
Description 18 p.
First page 137
Last page 154
Country United States
State Oregon
Other Geospatial Mount Mazama