Re-Os systematics and geochemistry of cobaltite (CoAsS) in the Idaho cobalt belt, Belt-Purcell Basin, USA: Evidence for middle Mesoproterozoic sediment-hosted Co-Cu sulfide mineralization with Grenvillian and Cretaceous remobilization

Ore Geology Reviews
By: , and 

Links

Abstract

We report the first study of the Re-Os systematics of cobaltite (CoAsS) using disseminated grains and massive sulfides from samples of two breccia-type and two stratabound deposits in the Co-Cu-Au Idaho cobalt belt (ICB), Lemhi subbasin to the Belt-Purcell Basin, Idaho, USA. Using a 185Re + 190Os spike solution, magnetic and non-magnetic fractions of cobaltite mineral separates give reproducible Re-Os analytical data for aliquot sizes of 150 to 200 mg. Cobaltite from the ICB has highly radiogenic 187Os/188Os ratios (17–45) and high 187Re/188Os ratios (600–1800) but low Re and total Os contents (ca. 0.4–4 ppb and 14–64 ppt, respectively). Containing 30 to 74% radiogenic 187Os, cobaltite from the ICB is amenable to Re-Os age determination using the isochron regression approach.

Re-Os data for disseminated cobaltite mineralization in a quartz-tourmaline breccia from the Haynes-Stellite deposit yield a Model 1 isochron age of 1349 ± 76 Ma (2σ, n = 4, mean squared weighted deviation MSWD = 2.1, initial 187Os/188Os ratio = 4.7 ± 2.2). This middle Mesoproterozoic age is preserved despite a possible metamorphic overprint or a pulse of metamorphic-hydrothermal remobilization of pre-existing cobaltite that formed along fold cleavages during the ca. 1190–1006 Ma Grenvillian orogeny. This phase of remobilization is tentatively identified by a Model 3 isochron age of 1132 ± 240 Ma (2σ, n = 7, MSWD = 9.3, initial 187Os/188Os ratio of 9.0 ± 2.9) for cobaltite in the quartz-tourmaline breccia from the Idaho zone in the Blackbird mine.

All Mesoproterozoic cobaltite mineralization in the district was affected by greenschist- to lower amphibolite-facies (garnet zone) metamorphism during the Late Jurassic to Late Cretaceous Cordilleran orogeny. However, the fine- to coarse-grained massive cobaltite mineralization from the shear zone-hosted Chicago zone, Blackbird mine, is the only studied deposit that has severely disturbed Re-Os systematics with evidence for a linear trend of mixing with (metamorphic?) fluids.

The new Re-Os ages and extremely high initial 187Os/188Os ratios of cobaltite reported here favor a magmatic-hydrothermal genetic model for a multi-stage REE-Y-Co-Cu-Au mineralization occurring at ca. 1370 to 1349 Ma, and related to the emplacement of the Big Deer Creek granite pluton at ca. 1377 Ma. In our model, deposition of paragenetically early xenotime and gadolinite was followed by an influx of Mesoproterozoic evaporitic brines and magmatic-hydrothermal fluids containing metals and reduced sulfur derived from mafic and oceanic island-arc Archean to Paleoproterozoic rocks in the Laurentian basement. Cobaltite mineralization occurred upon cooling of these fluids at an inferred temperature of 300 °C or below.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Re-Os systematics and geochemistry of cobaltite (CoAsS) in the Idaho cobalt belt, Belt-Purcell Basin, USA: Evidence for middle Mesoproterozoic sediment-hosted Co-Cu sulfide mineralization with Grenvillian and Cretaceous remobilization
Series title Ore Geology Reviews
DOI 10.1016/j.oregeorev.2017.02.032
Volume 86
Year Published 2017
Language English
Publisher Elsevier
Contributing office(s) Geology, Minerals, Energy, and Geophysics Science Center
Description 17 p.
First page 509
Last page 525
Country United States
State Idaho
Other Geospatial Belt-Purcell Basin
Google Analytic Metrics Metrics page
Additional publication details