Vulnerability of high-latitude soil organic carbon in North America to disturbance

Journal of Geophysical Research G: Biogeosciences
By: , and 

Links

Abstract

This synthesis addresses the vulnerability of the North American high-latitude soil organic carbon (SOC) pool to climate change. Disturbances caused by climate warming in arctic, subarctic, and boreal environments can result in significant redistribution of C among major reservoirs with potential global impacts. We divide the current northern high-latitude SOC pools into (1) near-surface soils where SOC is affected by seasonal freeze-thaw processes and changes in moisture status, and (2) deeper permafrost and peatland strata down to several tens of meters depth where SOC is usually not affected by short-term changes. We address key factors (permafrost, vegetation, hydrology, paleoenvironmental history) and processes (C input, storage, decomposition, and output) responsible for the formation of the large high-latitude SOC pool in North America and highlight how climate-related disturbances could alter this pool's character and size. Press disturbances of relatively slow but persistent nature such as top-down thawing of permafrost, and changes in hydrology, microbiological communities, pedological processes, and vegetation types, as well as pulse disturbances of relatively rapid and local nature such as wildfires and thermokarst, could substantially impact SOC stocks. Ongoing climate warming in the North American high-latitude region could result in crossing environmental thresholds, thereby accelerating press disturbances and increasingly triggering pulse disturbances and eventually affecting the C source/sink net character of northern high-latitude soils. Finally, we assess postdisturbance feedbacks, models, and predictions for the northern high-latitude SOC pool, and discuss data and research gaps to be addressed by future research.

Study Area

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Vulnerability of high-latitude soil organic carbon in North America to disturbance
Series title Journal of Geophysical Research G: Biogeosciences
DOI 10.1029/2010JG001507
Volume 116
Issue G4
Year Published 2011
Language English
Publisher AGU
Contributing office(s) Volcano Science Center
Description G00K06; 23 p.
First page 1
Last page 23
Country Canada, United States