Convection in a volcanic conduit recorded by bubbles

Geology
By: , and 

Links

Abstract

Microtextures of juvenile pyroclasts from Kīlauea’s (Hawai‘i) early A.D. 2008 explosive activity record the velocity and depth of convection within the basaltic magma-filled conduit. We use X-ray microtomography (μXRT) to document the spatial distribution of bubbles. We find small bubbles (radii from 5 μm to 70 μm) in a halo surrounding larger millimeter-size bubbles. This suggests that dissolved water was enriched around the larger bubbles—the opposite of what is expected if bubbles grow as water diffuses into the bubble. Such volatile enrichment implies that the volatiles within the large bubbles were redissolving into the melt as they descended into the conduit by the downward motion of convecting magma within the lava lake. The thickness of the small bubble halo is ∼100–150 μm, consistent with water diffusing into the melt on time scales on the order of 103 s. Eruptions, triggered by rockfall, rapidly exposed this magma to lower pressures, and the haloes of melt with re-dissolved water became sufficiently supersaturated to cause nucleation of the population of smaller bubbles. The required supersaturation pressures are consistent with a depth of a few hundred meters and convection velocities of the order of 0.1 m s−1, similar to the circulation velocity observed on the surface of the Halema‘uma‘u lava lake.

Publication type Article
Publication Subtype Journal Article
Title Convection in a volcanic conduit recorded by bubbles
Series title Geology
DOI 10.1130/G33685.1
Volume 41
Issue 4
Year Published 2013
Language English
Publisher Geological Society of America
Contributing office(s) Volcano Science Center
Description 4 p.
First page 395
Last page 398
Country United States
State Hawai'i
Other Geospatial Kīlauea
Google Analytic Metrics Metrics page
Additional publication details