Correcting spacecraft jitter in HiRISE images

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
By: , and 
Edited by: B. WuK. DiJ. Oberst, and I. Karachevtseva



Mechanical oscillations or vibrations on spacecraft, also called pointing jitter, cause geometric distortions and/or smear in high resolution digital images acquired from orbit. Geometric distortion is especially a problem with pushbroom type sensors, such as the High Resolution Imaging Science Experiment (HiRISE) instrument on board the Mars Reconnaissance Orbiter (MRO). Geometric distortions occur at a range of frequencies that may not be obvious in the image products, but can cause problems with stereo image correlation in the production of digital elevation models, and in measuring surface changes over time in orthorectified images. The HiRISE focal plane comprises a staggered array of fourteen charge-coupled devices (CCDs) with pixel IFOV of 1 microradian. The high spatial resolution of HiRISE makes it both sensitive to, and an excellent recorder of jitter. We present an algorithm using Fourier analysis to resolve the jitter function for a HiRISE image that is then used to update instrument pointing information to remove geometric distortions from the image. Implementation of the jitter analysis and image correction is performed on selected HiRISE images. Resulting corrected images and updated pointing information are made available to the public. Results show marked reduction of geometric distortions. This work has applications to similar cameras operating now, and to the design of future instruments (such as the Europa Imaging System).

Publication type Conference Paper
Publication Subtype Conference Paper
Title Correcting spacecraft jitter in HiRISE images
Series title The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
DOI 10.5194/isprs-archives-XLII-3-W1-141-2017
Volume XLII-3/W1
Year Published 2017
Language English
Publisher International Society for Photogrammetry and Remote Sensing
Contributing office(s) Astrogeology Science Center
Description 8 p.
Larger Work Type Book
Larger Work Subtype Conference publication
Larger Work Title Proceedings: 2017 international symposium on planetary remote sensing and mapping (Volume XLII-3/W1)
First page 141
Last page 148
Conference Title 2017 International Symposium on Planetary Remote Sensing and Mapping
Conference Location Hong Kong
Conference Date August 13-16, 2017
Google Analytic Metrics Metrics page
Additional publication details