A biodynamic understanding of dietborne and waterborne Ag uptake from Ag NPs in the sediment-dwelling oligochaete, Tubifex tubifex

NanoImpact
By: , and 

Links

Abstract

Metal nanoparticles (Me-NPs) are increasingly used in various products, such as inks and cosmetics, enhancing the likelihood of their release into aquatic environments. An understanding of the mechanisms controlling their bioaccumulation and ecotoxicity in aquatic biota will help support environmental risk assessment. Here we characterized unidirectional parameters for uptake and elimination of silver (Ag) in the sediment-dwelling oligochaete Tubifex tubifex after waterborne (0.01–47 nmol Ag/L) and dietborne (0.4–482 nmol Ag/g dw sed.) exposures to Ag NPs and AgNO3, respectively. Worms accumulated Ag from AgNO3more efficiently than from Ag NPs during waterborne exposure. The Ag uptake rate constants from water were 8.2 L/g/d for AgNO3 and 0.34 L/g/d for Ag NPs. Silver accumulated from both forms was efficiently retained in tissues, as no significant loss of Ag was detected after up to 20 days of depuration in clean media. High mortality (~50%) during depuration (i.e. after 17 days) was only observed for worms exposed to waterborne AgNO3 (3 nmol/L). Sediment exposures to both Ag forms resulted in low accumulation, i.e., the uptake rate constants were 0.002 and 0.005 g/g/d for AgNO3 and Ag NPs, respectively. Avoidance was only observed for worms exposed to sediment amended with AgNO3. Incorporation of the estimated rate constants into a biodynamic model predicted that sediment is likely the most important route of uptake for Ag in both forms in ecologically relevant aquatic environments. However, inference of bioavailability from our estimations of Ag assimilation efficiencies (AE) suggests that Ag (AE: 3–12% for AgNO3 and 0.1–0.8% for Ag NPs) is weakly bioavailable from sediment for this species. Thus, Ag amended to sediment as NPs might not pose greater problems than 'conventional' Ag for benthic organisms such as T. tubifex.

Publication type Article
Publication Subtype Journal Article
Title A biodynamic understanding of dietborne and waterborne Ag uptake from Ag NPs in the sediment-dwelling oligochaete, Tubifex tubifex
Series title NanoImpact
DOI 10.1016/j.impact.2018.01.002
Volume 11
Year Published 2018
Language English
Publisher Elsevier
Contributing office(s) National Research Program - Western Branch
Description 9 p.
First page 33
Last page 41
Google Analytic Metrics Metrics page
Additional publication details