Contaminants of emerging concern in urban stormwater: Spatiotemporal patterns and removal by iron-enhanced sand filters (IESFs)

Water Research
By: , and 

Links

Abstract

Numerous contaminants of emerging concern (CECs) typically occur in urban rivers. Wastewater effluents are a major source of many CECs. Urban runoff (stormwater) is a major urban water budget component and may constitute another major CEC pathway. Yet, stormwater-based CEC field studies are rare. This research investigated 384 CECs in 36 stormwater samples in Minneapolis-St. Paul, Minnesota, USA. Nine sampling sites included three large stormwater conveyances (pipes) and three paired iron-enhanced sand filters (IESFs; untreated inlets and treated outlets). The 123 detected compounds included commercial-consumer compounds, veterinary and human pharmaceuticals, lifestyle and personal care compounds, pesticides, and others. Thirty-one CECs were detected in ≥50% of samples. Individual samples contained a median of 35 targeted CECs (range: 18–54). Overall, median concentrations were ≥10 ng/L for 25 CECs and ≥100 ng/L for 9 CECs. Ranked, hierarchical linear modeling indicated significant seasonal- and site type-based concentration variability for 53 and 30 CECs, respectively, with observed patterns corresponding to CEC type, source, usage, and seasonal hydrology. A primarily warm-weather, diffuse, runoff-based profile included many herbicides. A second profile encompassed winter and/or late summer samples enriched with some recalcitrant, hydrophobic compounds (e.g., PAHs), especially at pipes, suggesting conservative, less runoff-dependent sources (e.g., sediments). A third profile, indicative of mixed conservative/non-runoff, runoff, and/or atmospheric sources and transport that collectively affect a variety of conditions, included various fungicides, lifestyle, non-prescription, and commercial-consumer CECs. Generally, pipe sites had large, diverse land-use catchments, and showed more frequent detections of diverse CECs, but often at lower concentrations; while untreated sites (with smaller, more residential-catchments) demonstrated greater detections of “pseudo-persistent” and other ubiquitous or residentially-associated CECs. Although untreated stormwater transports an array of CECs to receiving waters, IESF treatment significantly removed concentrations of 14 (29%) of the 48 most detected CECs; for these, median removal efficiencies were 26%–100%. Efficient removal of some hydrophobic (e.g., PAHs, bisphenol A) and polar-hydrophilic (e.g., caffeine, nicotine) compounds indicated particulate-bound contaminant filtration and for certain dissolved contaminants, sorption.

Study Area

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Contaminants of emerging concern in urban stormwater: Spatiotemporal patterns and removal by iron-enhanced sand filters (IESFs)
Series title Water Research
DOI 10.1016/j.watres.2018.08.020
Volume 145
Year Published 2018
Language English
Publisher Elsevier
Contributing office(s) Minnesota Water Science Center
Description 14 p.
First page 332
Last page 345
Country United States
State Minnesota
City Minneapolis, St. Paul