Uranium(VI) release from contaminated vadose zone sediments: Estimation of potential contributions from dissolution and desorption

By: , and 

Links

Abstract

A key difficulty in developing accurate, science-based conceptual models for remediation of contaminated field sites is the proper accounting of multiple coupled geochemical and hydrologic processes. An example of such a difficulty is the separation of desorption and dissolution processes in releasing contaminants from sediments to groundwaters; very few studies are found in the literature that attempt to quantify contaminant release by these two processes. In this study, the results from several extraction techniques, isotopic exchange experiments, and published spectroscopic studies were combined to estimate the contributions of desorption and dissolution to U(VI) release from contaminated sediments collected from the vadose zone beneath former waste disposal ponds in the Hanford 300-Area (Washington State). Vertical profiles of sediments were collected at four locations from secondary pond surfaces down to, and slightly below, the water table. In three of the four profiles, uraniumconcentration gradients were observed in the sediments, with the highest U concentrations at the top of the profile. One of the vertical profiles contained sediments with U concentrations up to 4.2×10−7 mol g−1 (100 ppm). U(VI) release to artificial groundwater solutions (AGWs) and extracts from these high-U concentration sediments occurred primarily from dissolution of precipitated U(VI) minerals, including the mineral metatorbernite, [Cu(UO2PO4)2·8H2O]. At the bottom of this profile, beneath the water table, and in all three of the other profiles, U concentrations were <5.88×10−8 mol g−1 (14 ppm), and U(VI) release to AGWs occurred primarily due to desorption of U(VI). When reacted in batch experiments with AGWs with compositions representative of the range of chemical conditions in the underlying aquifer, all samples released U(VI) at concentrations greater than regulatory limits within few hours. A semi-mechanistic surface complexation model was developed to describe U(VI) adsorption on sediments collected from near the water table, as a function of pH, alkalinity, and Ca and U(VI) concentrations, using ranges in these variables relevant to groundwater conditions in the aquifer. Dilute (bi)carbonate solution extractions and uranium isotopic exchange methods were capable of estimating adsorbed U(VI) in samples where U(VI) release was predominantly due to U(VI) desorption; these techniques were not effective at estimating adsorbed U(VI) where U(VI) release was affected by dissolution of U(VI) minerals. The combination of extraction and isotopic exchange results, spectroscopic studies, and surface complexation modeling allow an adequate understanding for the development of a geochemical conceptual model for U(VI) release to the aquifer. The overall approach has generic value for evaluating the potential for release of metals and radionuclides from sediments that contain both precipitated and adsorbed contaminant speciation.

Additional publication details

Publication type Book chapter
Publication Subtype Book Chapter
Title Uranium(VI) release from contaminated vadose zone sediments: Estimation of potential contributions from dissolution and desorption
Chapter 14
DOI 10.1016/S1571-9197(07)07014-0
Volume 7
Year Published 2007
Language English
Publisher Elsevier
Contributing office(s) Toxic Substances Hydrology Program
Description 42 p.
Larger Work Type Book
Larger Work Title Developments in earth and environmental sciences
First page 375
Last page 416