Strong variation in weathering of layered rock maintains hillslope‐scale strength under high precipitation

Earth Surface Processes and Landforms
By: , and 

Links

Abstract

The evolution of volcanic landscapes and their landslide potential are both dependent upon the weathering of layered volcanic rock sequences. We characterize critical zone structure using shallow seismic Vp and Vs profiles and vertical exposures of rock across a basaltic climosequence on Kohala peninsula, Hawai’i, and exploit the dramatic gradient in mean annual precipitation (MAP) across the peninsula as a proxy for weathering intensity. Seismic velocity increases rapidly with depth and the velocity–depth gradient is uniform across three sites with 500–600 mm/yr MAP, where the transition to unaltered bedrock occurs at a depth of 4 to 10 m. In contrast, velocity increases with depth less rapidly at wetter sites, but this gradient remains constant across increasing MAP from 1000 to 3000 mm/yr and the transition to unaltered bedrock is near the maximum depth of investigation (15–25 m). In detail, the profiles of seismic velocity and of weathering at wet sites are nowhere monotonic functions of depth. The uniform average velocity gradient and the greater depths of low velocities may be explained by the averaging of velocities over intercalated highly weathered sites with less weathered layers at sites where MAP > 1000 mm/yr. Hence, the main effect of climate is not the progressive deepening of a near‐surface altered layer, but rather the rapid weathering of high permeability zones within rock subjected to precipitation greater than ~1000 mm/yr. Although weathering suggests mechanical weakening, the nearly horizontal orientation of alternating weathered and unweathered horizons with respect to topography also plays a role in the slope stability of these heterogeneous rock masses. We speculate that where steep, rapidly evolving hillslopes exist, the sub‐horizontal orientation of weak/strong horizons allows such sites to remain nearly as strong as their less weathered counterparts at drier sites, as is exemplified by the 50°–60° slopes maintained in the amphitheater canyons on the northwest flank of the island. 

Study Area

Publication type Article
Publication Subtype Journal Article
Title Strong variation in weathering of layered rock maintains hillslope‐scale strength under high precipitation
Series title Earth Surface Processes and Landforms
DOI 10.1002/esp.4290
Volume 43
Issue 6
Year Published 2018
Language English
Publisher Wiley
Contributing office(s) Office of the AD Hazards
Description 12 p.
First page 1183
Last page 1194
Country United States
State Hawai'i
Other Geospatial Kohala peninsula
Google Analytic Metrics Metrics page
Additional publication details