Selenium adsorption by goethite

Soil Science Society of America Journal
By:  and 

Links

Abstract

The adsorption of Se by goethite was studied as a function of time (10 min–24 h), temperature (295.5 and 303.5 K), pH (4–11), particle concentration (3–300 mg/L), total Se concentration (0.02–5 × 10−5 M), oxidation state [Se(IV) and Se(VI)], and competing anion concentration [(anion)/(Se(IV) = 0.25 to 50 000] in order to assess the influence of these factors on Se mobility. The data indicate that (i) the surface sites of goethite are heterogeneous, (ii) the adsorption of selenite [Se(IV)] reaches equilibrium in 2 h and is completely reversible with respect to pH, (iii) the removal of selenite from solution increases with decreasing pH and increasing particle concentration, (iv) the adsorption edge for selenite shifts to lower pH values with increasing total selenite concentrations, (v) selenite adsorbs much more strongly than selenate [Se(VI)], and (vi) the influence of additional anions on selenite adsorption depends on the relative affinity of the anions for the surface and the relative concentrations of the anions. For a given anion concentration ratio, the competition sequence with selenite is phosphate > silicate ≥ citrate > molybdate > bicarbonate/carbonate > oxalate > fluoride > sulfate. Therefore, the conditions that favor the mobility of Se in the environment with respect to adsorption are alkaline pH, high Se concentrations, oxidizing conditions, and high concentrations of additional anions that strongly adsorb.

Publication type Article
Publication Subtype Journal Article
Title Selenium adsorption by goethite
Series title Soil Science Society of America Journal
DOI 10.2136/sssaj1987.03615995005100050009x
Volume 51
Issue 5
Year Published 1987
Language English
Publisher ACSESS
Contributing office(s) Colorado Water Science Center, Geology, Minerals, Energy, and Geophysics Science Center
Description 7 p.
First page 1145
Last page 1151
Google Analytic Metrics Metrics page
Additional publication details