In ovo exposure to brominated flame retardants Part II: Assessment of effects of TBBPA-BDBPE and BTBPE on hatching success, morphometric and physiological endpoints in American kestrels

Ecotoxicology and Environmental Safety
By: , and 

Links

Abstract

Tetrabromobisphenol A bis(2,3-dibromopropyl ether) (TBBPA-BDBPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTPBE) are both brominated flame retardants (BFRs) that have been detected in birds; however, their potential biological effects are largely unknown. We assessed the effects of embryonic exposure to TBBPA-BDBPE and BTBPE in a model avian predator, the American kestrel (Falco sparverius). Fertile eggs from a captive population of kestrels were injected on embryonic day 5 (ED5) with a vehicle control or one of three doses within the range of concentrations that have been detected in biota (nominal concentrations of 0, 10, 50 or 100 ng/g egg; measured concentrations 0, 3.0, 13.7 or 33.5 ng TBBPA-BDBPE/g egg and 0, 5.3, 26.8 or 58.1 ng BTBPE/g egg). Eggs were artificially incubated until hatching (ED28), at which point blood and tissues were collected to measure morphological and physiological endpoints, including organ somatic indices, circulating and glandular thyroid hormone concentrations, thyroid gland histology, hepatic deiodinase activity, and markers of oxidative stress. Neither compound had any effects on embryo survival through 90% of the incubation period or on hatching success, body mass, organ size, or oxidative stress of hatchlings. There was evidence of sex-specific effects in the thyroid system responses to the BTBPE exposures, with type 2 deiodinase (D2) activity decreasing at higher doses in female, but not in male hatchlings, suggesting that females may be more sensitive to BTBPE. However, there were no effects of TBBPA-BDBPE on the thyroid system in kestrels. For the BTPBE study, a subset of high-dose eggs were collected throughout the incubation period to measure changes in BTBPE concentrations. There was no decrease in BTBPE over the incubation period, suggesting that BTBPE is slowly metabolized by kestrel embryos throughout their ~28-d development. These two compounds, therefore, do not appear to be particularly toxic to embryos of the American kestrel.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title In ovo exposure to brominated flame retardants Part II: Assessment of effects of TBBPA-BDBPE and BTBPE on hatching success, morphometric and physiological endpoints in American kestrels
Series title Ecotoxicology and Environmental Safety
DOI 10.1016/j.ecoenv.2019.04.047
Edition Online First
Volume 179
Year Published 2019
Language English
Publisher Elsevier
Contributing office(s) Environmental and Contaminants Research Center, Patuxent Wildlife Research Center
Description 9 p.
First page 151
Last page 159