Global patterns of tree stem growth and stand aboveground wood production in mangrove forests

Forest Ecology and Management
By: , and 

Links

Abstract

Mangrove forests provide important ecological and economic services including carbon sequestration and storage. The conservation and restoration of mangroves are expected to play an important role in mitigating climate change, and understanding the factors influencing mangrove stem growth and wood production are important in predicting and improving mangrove carbon sequestration and responses to environmental change. In this study, we collected data of individual diameter at breast height (DBH) growth rate and stand level aboveground wood production in both non-plantation (commonly termed as natural) mangroves and mangrove plantations across the world. Climatic factors, proxies of edaphic factors, as well as biological factors (e.g. mangrove species) were included as explanatory variables in the analyses to determine factors influencing the global patterns of tree growth rate and stand wood production of mangroves. Using hierarchical Classification and Regression Tree (CART) analysis we found interactions among environmental and biological factors in controlling mangrove tree growth rate and stand wood production. We also found different global patterns of tree growth rate and stand wood production between non-plantation mangroves and plantations. Climatic conditions (precipitation of driest season, precipitation seasonality) were the most important factors influencing the global pattern of tree DBH growth rate in non-plantation mangroves, with edaphic and biological characteristics also playing a role under specific climatic conditions. The global pattern of stand wood production in non-plantation mangroves was primarily determined by stand mean DBH growth rate of individual trees. However, in mangrove plantations management measures, specifically species selection and planting density, were the most important factors influencing the global patterns of tree growth rate and stand wood production. Our study provides parameters for a global estimation of long-term carbon sequestration in both non-plantation mangroves and mangrove plantations. In addition, our results help us better predict the dynamics of tree growth and carbon sequestration of non-plantation mangroves under changing climate.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Global patterns of tree stem growth and stand aboveground wood production in mangrove forests
Series title Forest Ecology and Management
DOI 10.1016/j.foreco.2019.04.045
Volume 444
Year Published 2019
Language English
Publisher Elsevier
Contributing office(s) Wetland and Aquatic Research Center
Description 11 p.
First page 382
Last page 392