Geochemical factors controlling dissolved elemental mercury and methylmercury formation in Alaskan wetlands of varying trophic status

Environmental Science & Technology
By: , and 

Links

Abstract

Transformations of aqueous inorganic divalent mercury (Hg(II)i) to volatile dissolved gaseous mercury (Hg(0)(aq)) and toxic methylmercury (MeHg) governs mercury bioavailability and fate in northern ecosystems. This study quantified concentrations of aqueous mercury species (Hg(II)i, Hg(0)(aq), MeHg) and relevant geochemical constituents in pore waters of eight Alaskan wetlands that differ in trophic status (i.e., bog-to-fen gradient) to gain insight on processes controlling dark Hg(II)i reduction and Hg(II)i methylation. Regardless of wetland trophic status, positive correlations were observed between pore water Hg(II)i and dissolved organic carbon (DOC) concentrations. The concentration ratio of Hg(0)(aq) to Hg(II)i exhibited an inverse relationship to Hg(II)i concentration. A ubiquitous pathway for Hg(0)(aq) formation was not identified based on geochemical data, but we surmise that dissolved organic matter (DOM) influences mercury retention in wetland pore waters by complexing Hg(II)i and decreasing the concentration of volatile Hg(0)(aq) relative to Hg(II)i. There was no evidence of Hg(0)(aq) abundance directly limiting mercury methylation. The concentration of MeHg relative to Hg(II)i was greatest in wetlands of intermediate trophic status, and geochemical data suggest mercury methylation pathways vary between wetlands. Our insights on geochemical factors influencing aqueous mercury speciation should be considered in context of the long-term fate of mercury in northern wetlands.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Geochemical factors controlling dissolved elemental mercury and methylmercury formation in Alaskan wetlands of varying trophic status
Series title Environmental Science & Technology
DOI 10.1021/acs.est.8b06041
Volume 53
Year Published 2019
Language English
Publisher American Chemical Society
Contributing office(s) Upper Midwest Water Science Center, WMA - Earth System Processes Division
Description 11 p.
First page 6203
Last page 6213