Biocrust science and global change

New Phytologist
By: , and 

Links

Abstract

Global environmental changes such as climate and land‐use change affect ecosystems worldwide, and this New Phytologist Virtual Issue brings together fundamental research questions and novel approaches associated with the study of biological soil crusts in the context of such shifts. In a changing world, organisms can display a limited set of responses that will determine their persistence over varied spatial and temporal scales. Specifically, organisms might tolerate the change – for example, via phenotypic plasticity – and remain present in local communities. Alternatively, organisms might shift or retract their range to match their historical niche, they may adapt to the directional selection pressures imposed by change, or they could be driven to local (and possibly global) extinction. Efforts to understand which of these responses particular plant species or assemblages will exhibit are necessary for predicting changes in ecosystem functioning and trophic interactions under global change scenarios, and for managing and supporting sustainable terrestrial ecosystems. Accordingly, the assessment of plant responses to global change has become a significant research focus. Despite this impressive effort, our understanding and combined work to measure the responses to global change for species and communities of nonvascular autotrophs, such as the cyanobacteria, lichens, and bryophytes that form biological soil crusts (Fig. 1), remain rare compared with the large focus on vascular plants (Fig. 2; Reed et al., 2016). Nevertheless, these nonvascular photosynthetic communities and their responses to change could have critical implications for determining ecosystem structure and function at the global‐scale (Elbert et al., 2012; Ferrenberg et al., 2017; Rodriguez‐Caballero et al., 2018).

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Biocrust science and global change
Series title New Phytologist
DOI 10.1111/nph.15992
Volume 223
Issue 3
Year Published 2019
Language English
Publisher Wiley, New Phytologist Trust
Contributing office(s) Southwest Biological Science Center
Description 5 p.
First page 1047
Last page 1051