Coexisting discrete bodies of rhyolite and punctuated volcanism characterize Yellowstone's post‐Lava Creek Tuff caldera evolution

Geochemistry, Geophysics, Geosystems
By: , and 

Links

Abstract

Ion‐microprobe 206Pb/238U geochronology and trace element geochemistry of the unpolished rims and sectioned interiors of zircons from Yellowstone caldera's oldest post‐caldera lavas provide insight into the magmatic system during the prelude and aftermath of the caldera‐forming Lava Creek supereruption. The post‐caldera lavas compose the Upper Basin Member of the Plateau Rhyolite and fall into two groups based on zircon crystallization age: early lavas with zircon ages between ~750 and 550 ka and late lavas with zircon ages between ~350 and 250 ka. Zircons from the early‐erupted East Biscuit Basin flow yield U‐Pb dates and trace element compositions, which when considered with the Pb isotopic compositions of their coexisting feldspars and pyroxenes, point to an isotopically distinct parental melt present during crystallization of the Lava Creek magma but untapped by the supereruption. Distinct zircon crystallization ages and Pb‐isotope compositions of major minerals between the early and late Upper Basin Member groups suggest contrasting sources in the magma reservoir. As proxies for melt evolution, the zircons indicate that Yellowstone's post‐caldera rhyolites became more evolved between mid‐ to late‐Pleistocene time, during the same interval that melting of hydrothermally altered wall rock and recharge by new silicic magmas changed in their relative roles. The results from this study indicate that discrete and ephemeral bodies of silicic magma, at times within a mush dominated reservoir and including during the prelude to the Lava Creek eruption, have characterized Yellowstone's subvolcanic reservoir.

Study Area

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Coexisting discrete bodies of rhyolite and punctuated volcanism characterize Yellowstone's post‐Lava Creek Tuff caldera evolution
Series title Geochemistry, Geophysics, Geosystems
DOI 10.1029/2019GC008321
Volume 20
Issue 8
Year Published 2019
Language English
Publisher American Geophysical Union
Contributing office(s) Volcano Science Center
Description 21 p.
First page 3861
Last page 3881
Country United States
State Wyoming
Other Geospatial Yellowstone Caldera