Defining active, inactive, and extinct seafloor massive sulfide deposits

Marine Policy
By:  and 

Links

Abstract

Hydrothermal activity results in the formation of hydrothermal mineral deposits, including seafloor massive sulfide deposits, at oceanic spreading ridges, arcs, and back-arcs. As hydrothermal systems age, the mineral deposits eventually become severed from the heat source and fluid-flow pathways responsible for their formation and become extinct. The timescales and processes by which this cessation of activity occurs, and the resultant distinction between hydrothermally active and inactive deposits has recently taken on policy implications related to the potential issuance of exploitation leases for seafloor massive sulfide deposits by the International Seabed Authority in Areas Beyond National Jurisdiction. Here, we discuss the scientific rationale behind designating hydrothermal systems as active, inactive, or extinct, with the aim of applying a scientific underpinning to ongoing policy discussions, which often lack a common set of criteria and use the same descriptions for opposing phenomena. We apply the simple definition that active vent fields currently exhibit fluid flow above ambient seawater temperatures, inactive vent fields are not currently exhibiting fluid flow but may potentially become active again, and extinct vent fields are not expected to become active again. We suggest these terms can only be correctly applied at the vent field scale and define a vent field as a geologically continuous entity that may include both actively and formerly venting hydrothermal deposits. Finally, we propose criteria and techniques for determining activity and reasonably bounding the extent of a vent field for classification purposes.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Defining active, inactive, and extinct seafloor massive sulfide deposits
Series title Marine Policy
DOI 10.1016/j.marpol.2020.103926
Volume 117
Year Published 2020
Language English
Publisher Elsevier
Contributing office(s) Pacific Coastal and Marine Science Center
Description 103926
Google Analytic Metrics Metrics page