The potential of using dynamic strains in earthquake early warning applications

Seismological Research Letters
By: , and 



We investigate the potential of using borehole strainmeter data from the Network of the Americas (NOTA) and the U.S. Geological Survey networks to estimate earthquake moment magnitudes for earthquake early warning (EEW) applications. We derive an empirical equation relating peak dynamic strain, earthquake moment magnitude, and hypocentral distance, and investigate the effects of different types of instrument calibration on model misfit. We find that raw (uncalibrated) strains fit the model as accurately as calibrated strains. We test the model by estimating moment magnitudes of the largest two earthquakes in the July 2019 Ridgecrest earthquake sequence—the M 6.4 foreshock and the M 7.1 mainshock—using two strainmeters located within ∼50  km of the rupture. In both the cases, the magnitude based on the dynamic strain component is within ∼0.1–0.4 magnitude units of the catalog moment magnitude. We then compare the temporal evolution of our strain‐derived magnitudes for the largest two Ridgecrest events to the real‐time performance of the ShakeAlert EEW System (SAS). The final magnitudes from NOTA borehole strainmeters are close to SAS real‐time estimates for the M 6.4 foreshock, and significantly more accurate for the M 7.1 mainshock.

Study Area

Publication type Article
Publication Subtype Journal Article
Title The potential of using dynamic strains in earthquake early warning applications
Series title Seismological Research Letters
DOI 10.1785/0220190385
Volume 91
Issue 5
Year Published 2020
Language English
Publisher Seismological Society of America
Contributing office(s) Earthquake Science Center
Description 11 p.
First page 2817
Last page 2827
Country Canada, United States
State British Columbia, California, Oregon, Washington
Google Analytic Metrics Metrics page
Additional publication details