Pulsed flow-through auto-feeding beaker systems for the laboratory culture of juvenile freshwater mussels

By: , and 



Newly metamorphosed freshwater mussels are small and delicate, so that captive laboratory culture presents challenges for handling; for maintenance of suitable microhabitat, water quality, and food; and for avoidance of competitors and predators. To address these challenges, a new pulsed flow-through auto-feeding beaker system was developed for culturing juvenile mussels. In this system, groups of mussels were maintained in 300- to 1000-mL beakers with a thin layer of sand substrate. The water in the beakers was static except for pulses that were delivered every 1 or 2 h and that displaced about half of the water in each beaker per water cycle. A peristaltic pump delivered food to multiple mixing cells where the water was automatically mixed with food just before the water delivery. In testing this approach, newly metamorphosed mussels of 4 species were cultured in the system for 84 to 357 d. The sand and beakers were replaced weekly. Survival was high (>85% at day 84) for Lampsilis siliquoidea and Villosa iris, but relatively lower for Anodonta californiensis (29% at day 155) and Margaritifera falcata (23% at day 357). Growth rate ranged among the 4 species from 27 to 60 μm/d, with the slowest rate for M. falcata and fastest for A. californiensis. Overall, the new pulsed flow-through auto-feeding beaker system improved survival and growth of juvenile mussels versus other methods previously tested. Additionally, a simplified system for the water and food delivery was developed with a single mixing cell. The use of both systems indicate that they are suitable for laboratory experiments and for captive culture of juvenile mussels.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Pulsed flow-through auto-feeding beaker systems for the laboratory culture of juvenile freshwater mussels
Series title Aquaculture
DOI 10.1016/j.aquaculture.2020.734959
Volume 520
Year Published 2020
Language English
Publisher Elsevier
Contributing office(s) Columbia Environmental Research Center
Description 734959, 8 p.
Google Analytic Metrics Metrics page
Additional metadata about this publication, not found in other parts of the page is in this table