2D micromodel study of clogging behavior of fine-grained particles associated with gas hydrate production in NGHP-02 gas hydrate reservoir sediments

Journal of Marine and Petroleum Geology
By: , and 

Links

Abstract

Fine-grained particles (fines) commonly coexist with coarse-grained sediments that host gas hydrate. These fines can be mobilized by liquid and gas flow during gas hydrate production. Once mobilized, fines can clog pore throats and reduce reservoir permeability. Even where particle sizes are smaller than pore-throat sizes, clogs can form due to clusters of fines. For certain types of fines, particularly swelling clays, cluster sizes depend on pore-fluid chemistry, which changes as pore-fluid freshens during gas hydrate dissociation. Fines can also be concentrated by a moving gas/liquid interface, increasing the chances of pore-throat clogging regardless of fines type. To test the relative significance of these clogging mechanisms, 2D micromodel experiments have been conducted with different pore-throat widths (20, 40, 60 and 100 m), single-phase pore-fluids (deionized water and 2M-sodium-chloride solution), and moving gas/liquid interfaces on specimens from Sites NGHP-02-09 and NGHP-02-16 (NGHP-02: National Gas Hydrate Program Expedition 02) as well as a selection of pure fines (silica silt, mica, calcium carbonate, diatoms, kaolin, and bentonite). Clogging depended on the ratio of particle-to-pore throat size, and also on pore-fluid chemistry because the pore-fluid chemistry changes effectively increased or decreased the fines cluster size relative to the pore-throat width. These interactions can be predicted based on the fines electrical sensitivity (defined by Jang and Santamarina, 2016). The fine-grained sediment component (grain size < 75 m) from the primary gas hydrate reservoir layers at Sites NGHP-02-09 and -16 show clogging via blocking or size exclusion (sieving) due to the large particles. Clogs also formed due to bridging or blocking by clusters of the smaller particles. Clogging generally occurred for pore-water sediment concentrations so low (0.2% by mass or less), that it was difficult to resolve the enhanced clogging in the presence of the gas/liquid meniscus.

Study Area

Publication type Article
Publication Subtype Journal Article
Title 2D micromodel study of clogging behavior of fine-grained particles associated with gas hydrate production in NGHP-02 gas hydrate reservoir sediments
Series title Journal of Marine and Petroleum Geology
DOI 10.1016/j.marpetgeo.2018.09.010
Volume 108
Year Published 2019
Language English
Publisher Elsevier
Contributing office(s) Woods Hole Coastal and Marine Science Center
Description 17 p.
First page 714
Last page 730
Country India
Other Geospatial Bay of Bengal
Google Analytic Metrics Metrics page
Additional publication details