Effects of water level alteration on carbon cycling in peatlands

Ecosystem Health and Sustainability
By: , and 

Links

Abstract

Globally, peatlands play an important role in the carbon (C) cycle. High water level is a key factor in maintaining C storage in peatlands, but water levels are vulnerable to climate change and anthropogenic disturbance. This review examines literature related to the effects of water level alteration on C cycling in peatlands to summarize new ideas and uncertainties emerging in this field. Peatland ecosystems maintain their function by altering plant community structure to adapt to changing water levels. Regarding primary production, woody plants are more productive in unflooded, well-aerated conditions, while Sphagnum mosses are more productive in wetter conditions. The responses of sedges to water level alteration are species-specific. While peat decomposition is faster in unflooded, well aerated conditions, increased plant production may counteract the C loss induced by increased ecosystem respiration (ER) for a period of time. In contrast, rising water table maintains anaerobic conditions and enhances the role of the peatland as a C sink. Nevertheless, changes in DOC flux during water level fluctuation is complicated and depends on the interactions of flooding with environment. Notably, vegetation also plays a role in C flux but particular species vary in their ability to sequester and transport C. Bog ecosystems have a greater resilience to water level alteration than fens, due to differences in biogeochemical responses to hydrology. The full understanding of the role of peatlands in global C cycling deserves much more study due to uncertainties of vegetation feedbacks, peat–water interactions, microbial mediation of vegetation, wildfire, and functional responses after hydrologic restoration.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Effects of water level alteration on carbon cycling in peatlands
Series title Ecosystem Health and Sustainability
DOI 10.1080/20964129.2020.1806113
Volume 6
Issue 1
Year Published 2020
Language English
Publisher Taylor & Francis
Contributing office(s) Wetland and Aquatic Research Center
Description 1806113, 29 p.
Google Analytic Metrics Metrics page
Additional metadata about this publication, not found in other parts of the page is in this table