What could explain δ13C signatures in biocrust cyanobacteria of drylands?

Microbial Ecology
By: , and 



Dryland ecosystems are increasing in geographic extent and contribute greatly to interannual variability in global carbon dynamics. Disentangling interactions among dominant primary producers, including plants and autotrophic microbes, can help partition their contributions to dryland C dynamics. We measured the δ13C signatures of biological soil crust cyanobacteria and dominant plant species (C3 and C4) across a regional scale in the southwestern USA to determine if biocrust cyanobacteria were coupled to plant productivity (using plant-derived C mixotrophically), or independent of plant activity (and therefore purely autotrophic). Cyanobacterial assemblages located next to all C3 plants and one C4 species had consistently more negative δ13C (by 2‰) than the cyanobacteria collected from plant interspaces or adjacent to two C4Bouteloua grass species. The differences among cyanobacterial assemblages in δ13C could not be explained by cyanobacterial community composition, photosynthetic capacity, or any measured leaf or root characteristics (all slopes not different from zero). Thus, microsite differences in abiotic conditions near plants, rather than biotic interactions, remain a likely mechanism underlying the observed δ13C patterns to be tested experimentally.

Study Area

Publication type Article
Publication Subtype Journal Article
Title What could explain δ13C signatures in biocrust cyanobacteria of drylands?
Series title Microbial Ecology
DOI 10.1007/s00248-020-01536-3
Volume 81
Year Published 2021
Language English
Publisher Springerlink
Contributing office(s) Southwest Biological Science Center
Description 12 p.
First page 134
Last page 145
Country United States
State New Mexico
Other Geospatial Jornada Basin
Google Analytic Metrics Metrics page
Additional publication details