Drought stress and hurricane defoliation influence mountain clouds and moisture recycling in a tropical forest

By: , and 



Mountain ranges generate clouds, precipitation, and perennial streamflow for water supplies, but the role of forest cover in mountain hydrometeorology and cloud formation is not well understood. In the Luquillo Experimental Forest of Puerto Rico, mountains are immersed in clouds nightly, providing a steady precipitation source to support the tropical forest ecosystems and human uses. A severe drought in 2015 and the removal of forest canopy (defoliation) by Hurricane Maria in 2017 created natural experiments to examine interactions between the living forest and hydroclimatic processes. These unprecedented land-based observations over 4.5 y revealed that the orographic cloud system was highly responsive to local land-surface moisture and energy balances moderated by the forest. Cloud layer thickness and immersion frequency on the mountain slope correlated with antecedent rainfall, linking recycled terrestrial moisture to the formation of mountain clouds; and cloud-base altitude rose during drought stress and posthurricane defoliation. Changes in diurnal cycles of temperature and vapor-pressure deficit and an increase in sensible versus latent heat flux quantified local meteorological response to forest disturbances. Temperature and water vapor anomalies along the mountain slope persisted for at least 12 mo posthurricane, showing that understory recovery did not replace intact forest canopy function. In many similar settings around the world, prolonged drought, increasing temperatures, and deforestation could affect orographic cloud precipitation and the humans and ecosystems that depend on it.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Drought stress and hurricane defoliation influence mountain clouds and moisture recycling in a tropical forest
Series title PNAS
DOI 10.1073/pnas.2021646118
Volume 118
Issue 7
Year Published 2021
Language English
Publisher National Academy of Sciences
Contributing office(s) Land Change Science
Description e2021646118, 8 p.
Country United States
State Puerto Rico
Google Analytic Metrics Metrics page
Additional publication details