Indicators of volcanic eruptions revealed by global M4+ earthquakes

Journal of Geophysical Research
By: , and 



Determining whether seismicity near volcanoes is due primarily to tectonic or magmatic processes is a challenging but critical endeavor for volcanic eruption forecasting and detection, especially at poorly monitored volcanoes. Global statistics on the occurrence and timing of earthquakes near volcanoes both within and outside of eruptive periods reveal patterns in eruptive seismicity that may improve our ability to discern magmatically driven seismicity from purely tectonic seismicity. In this paper, we catalog magnitude four and greater (M4+) earthquakes near volcanoes globally and compute statistics on their occurrence with respect to various eruptive and volcanic attributes, evaluating their utility as diagnostic indicators of eruptions. Using a 2‐week time window and a 30 km radius around the volcanoes, we find that 11% of eruptions are preceded by at least one M4+ earthquake, but only 1% of such earthquakes is followed by eruption. However, earthquakes located 5–15 km from the volcano, those with normal faulting mechanisms and/or large nondouble‐couple components, and those occurring as groups are more commonly associated with eruptions, providing significant forecasting utility in some cases. Similarly, certain volcanoes are more likely to exhibit such precursors, such as those with long repose periods. We illustrate the use of these data in eruption forecasting scenarios, including rapid identification of analogous earthquake sequences at other volcanoes. When integrated within the context of multiparametric, multidisciplinary probabilistic assessments of volcanic activity, global earthquake statistics can improve eruption forecasts, and our work provides a model for use on other rapidly expanding global volcanological databases.

Publication type Article
Publication Subtype Journal Article
Title Indicators of volcanic eruptions revealed by global M4+ earthquakes
Series title Journal of Geophysical Research
DOI 10.1029/2020JB021294
Volume 126
Issue 3
Year Published 2021
Language English
Publisher American Geophysical Union
Contributing office(s) Volcano Science Center
Description e2020JB021294, 28 p.
Google Analytic Metrics Metrics page
Additional publication details