Effect of nanoparticle size and natural organic matter composition on the bioavailability of polyvinylpyrrolidone- coated platinum nanoparticles to a model freshwater invertebrate

Environ. Sci. Technol.
By: , and 

Links

Abstract

The bioavailability of dissolved Pt(IV) and polyvinylpyrrolidone-coated platinum nanoparticles (PtNPs) of five different nominal hydrodynamic diameters (20, 30, 50, 75, and 95 nm) was characterized in laboratory experiments using the model freshwater snail Lymnaea stagnalis. Dissolved Pt(IV) and all nanoparticle sizes were bioavailable to L. stagnalis. Platinum bioavailability, inferred from conditional uptake rate constants, was greater for nanoparticulate than dissolved forms and increased with increasing nanoparticle hydrodynamic diameter. The effect of natural organic matter (NOM) composition on PtNP bioavailability was evaluated using six NOM samples at two nanoparticle sizes (20 and 95 nm). NOM suppressed the bioavailability of 95 nm PtNPs in all cases, and DOM reduced sulfur content exhibited a positive correlation with 95 nm PtNP bioavailability. The bioavailability of 20 nm PtNPs was only suppressed by NOM with a low reduced sulfur content. The physiological elimination of Pt accumulated after dissolved Pt(IV) exposure was slow and constant. In contrast, the elimination of Pt accumulated after PtNP exposures exhibited a triphasic pattern likely involving in vivo PtNP dissolution. This work highlights the importance of PtNP size and interfacial interactions with NOM on Pt bioavailability and suggests that in vivo PtNP transformations could yield unexpectedly higher adverse effects to organisms than dissolved exposure alone.

Publication type Article
Publication Subtype Journal Article
Title Effect of nanoparticle size and natural organic matter composition on the bioavailability of polyvinylpyrrolidone- coated platinum nanoparticles to a model freshwater invertebrate
Series title Environ. Sci. Technol.
DOI 10.1021/acs.est.0c05985
Volume 55
Issue 4
Year Published 2021
Language English
Publisher American Chemical Society
Contributing office(s) WMA - Earth System Processes Division
Description 10 p.
First page 2452
Last page 2461
Google Analytics Metrics Metrics page
Additional publication details