Digital elevation models: Terminology and definitions

Remote Sensing
By: , and 

Links

Abstract

Digital elevation models (DEMs) provide fundamental depictions of the three-dimensional shape of the Earth’s surface and are useful to a wide range of disciplines. Ideally, DEMs record the interface between the atmosphere and the lithosphere using a discrete two-dimensional grid, with complexities introduced by the intervening hydrosphere, cryosphere, biosphere, and anthroposphere. The treatment of DEM surfaces, affected by these intervening spheres, depends on their intended use, and the characteristics of the sensors that were used to create them. DEM is a general term, and more specific terms such as digital surface model (DSM) or digital terrain model (DTM) record the treatment of the intermediate surfaces. Several global DEMs generated with optical (visible and near-infrared) sensors and synthetic aperture radar (SAR), as well as single/multi-beam sonars and products of satellite altimetry, share the common characteristic of a georectified, gridded storage structure. Nevertheless, not all DEMs share the same vertical datum, not all use the same convention for the area on the ground represented by each pixel in the DEM, and some of them have variable data spacings depending on the latitude. This paper highlights the importance of knowing, understanding and reflecting on the sensor and DEM characteristics and consolidates terminology and definitions of key concepts to facilitate a common understanding among the growing community of DEM users, who do not necessarily share the same background. 
Publication type Article
Publication Subtype Journal Article
Title Digital elevation models: Terminology and definitions
Series title Remote Sensing
DOI 10.3390/rs13183581
Volume 13
Issue 18
Year Published 2021
Language English
Publisher MDPI
Contributing office(s) Earth Resources Observation and Science (EROS) Center
Description 3581, 19 p.
Google Analytic Metrics Metrics page
Additional publication details