Characteristics, relationships and precision of direct acoustic-to-seismic coupling measurements from local explosions

Geophysical Journal International
By: , and 

Links

Abstract

Acoustic energy originating from explosions, sonic booms, bolides and thunderclaps have been recorded on seismometers since the 1950s. Direct pressure loading from the passing acoustic wave has been modelled and consistently observed to produce ground deformations of the near surface that have retrograde elliptical particle motions. In the past decade, increased deployments of colocated seismometers and infrasound sensors have driven efforts to use the transfer function between direct acoustic-to-seismic coupling to infer near-surface material properties including seismic velocity structure and elastic moduli. In this study, we use a small aperture (≈600 m) array of broadband seismometers installed in different manners and depths in both granite and sedimentary overburden to understand the fundamental nature and repeatability of seismic excitation from 1 to 15 Hz using horizontally propagating acoustic waves generated by 97 local (2–10 km) explosions. In agreement with modelling, we find that the ground motions induced by acoustic-to-seismic coupling attenuate rapidly with depth. We confirm the modelled relation between acoustic and ground motion amplitudes, but show that within one acoustic wavelength, the uncertainty in the transfer coefficient between seismic and acoustic energy at a given seismic station increases linearly with separation distance between the seismic and acoustic sensor. We attribute this observation to the rapid decorrelation of the infrasonic wavefield across small spatial scales and recommend colocating seismic and infrasound sensors for use in studies seeking to invert for near-surface material properties. Additionally, contrary to acoustic-to-seismic coupling theory and prior observations, we find that seismometers emplaced in granite do not record retrograde elliptical particle motions in response to direct pressure loading. We rule out seismometer tilt effects as a likely source of this observations and suggest that existing models of acoustic-to-seismic excitation may be too simplistic for seismometers placed in high rigidity materials.
Publication type Article
Publication Subtype Journal Article
Title Characteristics, relationships and precision of direct acoustic-to-seismic coupling measurements from local explosions
Series title Geophysical Journal International
DOI 10.1093/gji/ggac154
Volume 230
Issue 3
Year Published 2022
Language English
Publisher Oxford University Press
Contributing office(s) Geologic Hazards Science Center
Description 17 p.
First page 2019
Last page 2035
Google Analytic Metrics Metrics page
Additional publication details