Skip to main content
U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Globally prevalent land nitrogen memory amplifies water pollution following drought years

Environmental Research Letters
By: , and 

Links

Abstract

Enhanced riverine delivery of terrestrial nitrogen (N) has polluted many freshwater and coastal ecosystems, degrading drinking water and marine resources. An emerging view suggests a contribution of land N memory effects—impacts of antecedent dry conditions on land N accumulation that disproportionately increase subsequent river N loads. To date, however, such effects have only been explored for several relatively small rivers covering a few episodes. Here we introduce an index for quantifying land N memory effects and assess their prevalence using regional observations and global terrestrial-freshwater ecosystem model outputs. Model analyses imply that land N memory effects are globally prevalent but vary widely in strength. Strong effects reflect large soil dissolved inorganic N (DIN) surpluses by the end of dry years. During the subsequent wetter years, the surpluses are augmented by soil net mineralization pulses, which outpace plant uptake and soil denitrification, resulting in disproportionately increased soil leaching and eventual river loads. These mechanisms are most prominent in areas with high hydroclimate variability, warm climates, and ecosystem disturbances. In 48 of the 118 basins analyzed, strong memory effects produce 43% (21%–88%) higher DIN loads following drought years than following average years. Such a marked influence supports close consideration of prevalent land N memory effects in water-pollution management efforts.

Publication type Article
Publication Subtype Journal Article
Title Globally prevalent land nitrogen memory amplifies water pollution following drought years
Series title Environmental Research Letters
DOI 10.1088/1748-9326/abd1a0
Volume 16
Year Published 2021
Language English
Publisher IOP Publishing
Contributing office(s) WMA - Integrated Modeling and Prediction Division
Description 014049, 12 p.
Google Analytic Metrics Metrics page
Additional publication details