Declines in prey production during the collapse of a tailwater Rainbow Trout population are associated with changing reservoir conditions

Transactions of American Fisheries Society
By: , and 

Links

Abstract

Objective

Understanding how energy moves through food webs and limits productivity at various trophic levels is a central question in aquatic ecology and can provide insight into drivers of fish population dynamics since many fish populations are food limited. In this study, we seek to better understand what factors drove a decline of >85% in the number of Rainbow TroutOncorhynchus mykiss found in the tailwater portion of the Colorado River below Glen Canyon Dam during 2012–2016.

Methods

We estimate the production of dominant prey using data from previously published studies of Rainbow Trout abundance and growth alongside drift and diet samples. We test how prey production correlates to both proximate (e.g., nutrients) and distal (e.g., limnological conditions in the upriver reservoir) drivers.

Result

Results suggest that gross consumption of invertebrate prey by the Rainbow Trout population declined from an annual mean of 423 to 69 kg/d. Daily production rates of dominant prey in aggregate declined from a high of 0.173 to 0.018 g·m−2·d−1. Chironomids accounted for 70% of the decline in prey production. Foraging efficiency by Rainbow Trout (range, 0.99–0.67) was high across the range of prey production rates. After the Rainbow Trout population had declined by ~90%, prey consumption saturated at higher rates of prey production and the gross quantity of daily drift exported from the reach increased from 8.9 to 12.7 kg/d.

Conclusion

Rainbow Trout population dynamics are largely influenced by changes in prey production, which is itself driven by soluble reactive phosphorus (SRP) concentrations in the reservoir. The SRP model predicted that prey production would increase by 32 kg/d (SE, 9) for each 1 μg/L increase in SRP. These concentrations were indirectly influenced by reservoir hydrology and biogeochemistry, linkages that may extend far beyond the confines of this tailwater fishery and into the downstream reaches of the Grand Canyon's Colorado River ecosystem.

Impact Statement

We combined Rainbow Trout diet, growth, and abundance estimates with concentrations of drifting invertebrates to estimate the biomass of Rainbow Trout prey produced over time. Trends in prey biomass production track trends in phosphorous concentrations in the river.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Declines in prey production during the collapse of a tailwater Rainbow Trout population are associated with changing reservoir conditions
Series title Transactions of American Fisheries Society
DOI 10.1002/tafs.10381
Volume 152
Issue 1
Year Published 2023
Language English
Publisher American Fisheries Society
Contributing office(s) Southwest Biological Science Center
Description 16 p.
First page 35
Last page 50
Country United States
State Arizona
Google Analytic Metrics Metrics page
Additional publication details