Tree symbioses sustain nitrogen fixation despite excess nitrogen supply

Ecological Monographs
By: , and 

Links

Abstract

Symbiotic nitrogen fixation (SNF) is a key ecological process whose impact depends on the strategy of SNF regulation—the degree to which rates of SNF change in response to limitation by N versus other resources. SNF that is obligate or exhibits incomplete downregulation can result in excess N fixation, whereas a facultative SNF strategy does not. We hypothesized that tree-based SNF strategies differed by latitude (tropical vs. temperate) and symbiotic type (actinorhizal vs. rhizobial). Specifically, we expected tropical rhizobial symbioses to display strongly facultative SNF as an explanation of their success in low-latitude forests. In this study we used 15N isotope dilution field experiments in New York, Oregon, and Hawaii to determine SNF strategies in six N-fixing tree symbioses. Nitrogen fertilization with +10 and +15 g N m−2 year−1 for 4–5 years alleviated N limitation in all taxa, paving the way to determine SNF strategies. Contrary to our hypothesis, all six of the symbioses we studied sustained SNF even at high N. Robinia pseudoacacia (temperate rhizobial) fixed 91% of its N (%Ndfa) in controls, compared to 64% and 59% in the +10 and +15 g N m−2 year−1 treatments. For Alnus rubra (temperate actinorhizal), %Ndfa was 95%, 70%, and 60%. For the tropical species, %Ndfa was 86%, 80%, and 82% for Gliricidia sepium (rhizobial); 79%, 69%, and 67% for Casuarina equisetifolia (actinorhizal); 91%, 42%, and 67% for Acacia koa (rhizobial); and 60%, 51%, and 19% for Morella faya (actinorhizal). Fertilization with phosphorus did not stimulate tree growth or SNF. These results suggest that the latitudinal abundance distribution of N-fixing trees is not caused by a shift in SNF strategy. They also help explain the excess N in many forests where N fixers are common.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Tree symbioses sustain nitrogen fixation despite excess nitrogen supply
Series title Ecological Monographs
DOI 10.1002/ecm.1562
Volume 93
Issue 2
Year Published 2023
Language English
Publisher Wiley
Contributing office(s) Forest and Rangeland Ecosystem Science Center
Description e1562, 27 p.
Country United States
State Hawai'i, New York, Oregon
Other Geospatial Coast Range, Big Island, Black Rock Forest, Starker Forest, Volcano Research Station, Waiakea Research Station
Google Analytic Metrics Metrics page
Additional publication details