Strategic graphite, a survey

Bulletin 1082-E
By:  and 

Links

Abstract

Strategic graphite consists of certain grades of lump and flake graphite for which the United States is largely or entirely dependent on sources abroad. Lump graphite of high purity, necessary in the manufacture of carbon brushes, is imported from Ceylon, where it occurs in vein deposits. Flake graphite, obtained from deposits consisting of graphite disseminated in schists and other metamorphic rocks, is an essential ingredient of crucibles used in the nonferrous metal industries and in the manufacture of lubricants and packings. High-quality flake graphite for these uses has been obtained mostly from Madagascar since World War I. Some flake graphite of strategic grade has been produced, however, from deposits in Texas, Alabama, and Pennsylvania. The development of the carbon-bonded crucible, which does not require coarse flake, should lessen the competitive advantage of the Madagascar producers of crucible flake.

Graphite of various grades has been produced intermittently in the United States since 1644. The principal domestic deposits of flake graphite are in Texas, Alabama, Pennsylvania, and New York. Reserves of flake graphite in these four States are very large, but production has been sporadic and on the whole unprofitable since World War I, owing principally to competition from producers in Madagascar. Deposits in Madagascar are large and relatively high in content of flake graphite. Production costs are low and the flake produced is of high quality. Coarseness of flake and uniformity of the graphite products marketed are cited as major advantages of Madagascar flake. In addition, the usability of Madagascar flake for various purposes has been thoroughly demonstrated, whereas the usability of domestic flake for strategic purposes is still in question.

Domestic graphite deposits are of five kinds: deposits consisting of graphite disseminated in metamorphosed siliceous sediments, deposits consisting of graphite disseminated in marble, deposits formed by thermal or dynamothermal metamorphism of coal beds or other highly carbonaceous sediments, vein deposits, and contact metasomatic deposits in marble. Only the first kind comprises deposits sufficiently large and rich in flake graphite to be significant potential sources of strategic grades of graphite. Vein deposits in several localities are known, but none is known to contain substantial reserves of graphite of strategic quality.

Large resources of flake graphite exist in central Texas, in northeastern Alabama, in eastern Pennsylvania, and in the eastern Adirondack Mountains of New York. Tonnages available, compared with the tonnages of flake graphite consumed annually in the United States, are very large. There have been indications that flake graphite from Texas, Alabama, and Pennsylvania can be used in clay-graphite crucibles as a substitute for Madagascar flake, and one producer has made progress in establishing markets for his flake products as ingredients of lubricants. The tonnages of various commercial grades of graphite recoverable from various domestic deposits, however, have not been established; hence, the adequacy of domestic resources of graphite in a time of emergency is not known.

The only vein deposits from which significant quantities of lump graphite have been produced are those of the Crystal Graphite mine, Beaverhead County, Mont. The deposits are fracture fillings in Precambrian gneiss and pegmatite. Known reserves in the deposits are small.

In Texas, numerous flake-graphite deposits occur in the Precambrian Packsaddle schist in Llano and Burnet Counties. Graphite disseminated in certain parts of this formation ranges from extremely fine to medium grained. The principal producer has been the mine of the Southwestern Graphite Co., west of the town of Burnet. Substantial reserves of medium-grained graphite are present in the deposit mined by the company.

In northeastern Alabama, flake-graphite deposits occur in the Ashland mica schist in two belts that trend northeastward across Clay, Goosa, and Chilton Counties. The northeastern belt has been the most productive. About 40 mines have been operated at one time or another, but only a few have been active during or since World War I. The deposits consist of flake graphite disseminated in certain zones or "leads" consisting of quartz-mica-feldspar schists and mica quartzite. Most of past production has come from the weathered upper parts of the deposits, but unweathered rock has been mined at several localities. Reserves of weathered rock containing 3 to 5 percent graphite are very large, and reserves of unweathered rock are even greater.

Flake graphite deposits in Chester County, Pa., have been worked intermittently since about 1890. The deposits consist of medium- to coarse-grained graphite disseminated in certain belts of the Pickering gneiss. The most promising deposit is one worked in the Benjamin Franklin and the Eynon Just mines. Reserves of weathered rock containing 1.5 percent graphite are of moderate size; reserves of unweathered rock are large.

In the eastern Adirondack Mountains in New York there are two principal kinds of flake-graphite deposits: contact-metasomatic deposits and those consisting of flake graphite disseminated in quartz schist. The contact-metasomatic deposits are small, irregular, and very erratic in graphite content. The deposits in quartz schist are very large, persistent, and uniform in grade. There are large reserves of schist containing 3 to 5 percent graphite, but the graphite is relatively fine grained.

Publication type Report
Publication Subtype USGS Numbered Series
Title Strategic graphite, a survey
Series title Bulletin
Series number 1082
Chapter E
DOI 10.3133/b1082E
Year Published 1960
Language English
Publisher U.S. Government Printing Office
Description Report: v, 120 p.; 4 Plates: 30.56 x 27.81 inches or smaller
Larger Work Type Report
Larger Work Subtype USGS Numbered Series
Larger Work Title Contributions to economic geology, 1958
First page 201
Last page 321
Google Analytic Metrics Metrics page
Additional publication details