Urban growth in American cities : glimpses of U.S. urbanization

Circular 1252

, , and



The Earth's surface is changing rapidly. Changes are local, regional, national, and even global in scope. Some changes have natural causes, such as earthquakes or drought. Other changes, such as urban expansion, agricultural intensification, resource extraction, and water resources development, are examples of human-induced change that have significant impact upon people, the economy, and resources. The consequences that result from these changes are often dramatic and widespread (Buchanan, Acevedo, and Zirbes, 2002)

It is the role of the U.S. Geological Survey (USGS) to provide useful and relevant scientific information both to the agencies within the Department of the Interior and to the Nation in general. In an effort to comply with this task, USGS scientists are assessing the status of, and the trends in, the Nation's land surface. This assessment provides useful information for regional and national land use decisionmaking. This knowledge can be used to deal with issues of significance to the Nation, such as quality-of-life, ecology of urban environments, ecosystem health, ecological integrity, water quality and quantity concerns, resource availability, vulnerability to natural hazards, safeguards to human health, air and land quality, and accessibility to scientific information. Results of these assessments can also be analyzed to reveal rates and trends in land use change. Results from urban growth studies provide a firm foundation for continuing research that explores the consequences of human modification of the landscape.

The USGS seeks to illustrate and explain the spatial history of urban growth and corresponding land use change. Scientists are studying urban environments from a regional perspective and a time scale of decades to measure the changes that have occurred in order to help understand the impact of anticipated changes in the future.

Within this booklet are pairs of images of selected urbanized regions from across the Nation. These image pairs illustrate the transformation that these areas have undergone over two decades. Specifically, they depict changes in the extent of urban land. Each change pair is composed of one image from the 1970s and one image from the 1990s. Accompanying each image pair is a brief historical geography of factors that helped facilitate major changes that have occurred since the founding of the main city and the consequences and challenges of regional urban growth. The goal of this publication is to provide an illustration of urban change that is easily understood by a broad audience.

The images used throughout this booklet were generated from land cover data developed by the USGS. The data sources include the Geographic Information Retrieval and Analysis System (GIRAS) for the 1970s images and the National Land Cover Dataset (NLCD) for the 1990s images. GIRAS digital maps are based on photointerpretations completed in the mid-1970s. The NLCD is a land cover dataset for the conterminous United States based on 1992 Landsat thematic mapper (TM) satellite imagery and supplemental data (fig. 1a and fig. 1b). The USGS distributes both of these land use and land cover digital datasets.

The images were developed by using a geographic information system (GIS). The GIRAS and NLCD datasets were used to identify urban land within each region. In the final images all urban areas are shown in red. A shaded-relief map of each region was used to display the topographic context of the red polygon coverage. For all of these images, urban land is defined as areas transformed into a built-up environment for human use. It includes residential areas, commercial and industrial developments, transportation features, and institutions.

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Urban growth in American cities : glimpses of U.S. urbanization
Series title:
Series number:
Year Published:
U.S. Geological Survey
Contributing office(s):
Earth Resources Observation and Science (EROS) Center
iv, 52 p.