Understanding Contaminants Associated with Mineral Deposits

Circular 1328



Interdisciplinary studies by the U.S. Geological Survey (USGS) have resulted in substantial progress in understanding the processes that control *the release of metals and acidic water from inactive mines and mineralized areas, *the transport of metals and acidic water to streams, and *the fate and effect of metals and acidity on downstream ecosystems. The potential environmental effects associated with abandoned and inactive mines, resulting from the complex interaction of a variety of chemical and physical processes, is an area of study that is important to the USGS Mineral Resources Program. Understanding the processes contributing to the environmental effects of abandoned and inactive mines is also of interest to a wide range of stakeholders, including both those responsible for managing lands with historically mined areas and those responsible for anticipating environmental consequences of future mining operations. The recently completed (2007) USGS project entitled 'Process Studies of Contaminants Associated with Mineral Deposits' focused on abandoned and inactive mines and mineralized areas in the Rocky Mountains of Montana, Colorado, New Mexico, Utah, and Arizona, where there are thousands of abandoned mines. Results from these studies provide new information that advances our understanding of the physical and biogeochemical processes causing the mobilization, transport, reaction, and fate of potentially toxic elements (including aluminum, arsenic, cadmium, copper, iron, lead, and zinc) in mineralized near-surface systems and their effects on aquatic and riparian habitat. These interdisciplinary studies provide the basis for scientific decisionmaking and remedial action by local, State, and Federal agencies charged with minimizing the effects of potentially toxic elements on the environment. Current (2007) USGS research highlights the need to understand (1) the geologic sources of metals and acidity and the geochemical reactions that release them from their sources, (2) the pathways that facilitate transport from those sources, and (3) the processes that control the fate of the elements once released from the sources. Experts in the fields of economic geology, structural geology, mineralogy, geophysics, geochemistry, hydrology, ground-water modeling, microbiology, and toxicology came together for a series of studies that address these relationships on scales ranging from the microscopic to the watershed. This Circular presents results and highlights from the detailed, interdisciplinary studies that include investigations in both mining-affected areas and mineralized but unmined areas. The first section of the Circular describes laboratory and site-scale field investigations that primarily focus on mineralogic and biologic controls on the source and release of metals and acidity from mine-waste rock and hydrothermally altered areas. The second section describes a set of basin- to watershed-scale studies that not only investigate the source and release of metals and acidity but also the transport of these constituents away from the source areas. The third section is a summary of results from postremediation ecosystem monitoring. For more information on these and other project-related studies, please visit the project Web site at http://minerals.cr.usgs.gov/projects/contaminants/index.html. The Web site includes a complete bibliography and detailed descriptions of each interdisciplinary study.

Additional publication details

Publication type Report
Publication Subtype USGS Numbered Series
Title Understanding Contaminants Associated with Mineral Deposits
Series title Circular
Series number 1328
DOI 10.3133/cir1328
Edition Version 1.0
Year Published 2008
Language ENGLISH
Publisher Geological Survey (U.S.)
Contributing office(s) Central Mineral Resources Team
Description iv, 96 p.
Google Analytic Metrics Metrics page
Additional metadata about this publication, not found in other parts of the page is in this table