The Conterminous United States Mineral Assessment Program; background information to accompany folio of geologic, geophysical, geochemical, mineral-occurrence, mineral-resource potential, and mineral-production maps of the Charlotte 1 degree x 2 degrees Quadrangle, North Carolina and South Carolina

Circular 944
By: , and 

Links

Abstract

This Circular and the folio of separately published maps described herein are part of a series of reports compiled under the Conterminous United States Mineral Assessment Program ICUSMAP). The folio on the Charlotte 1 degree ? 2 degree quadrangle, North Carolina and South Carolina, includes (1) a geologic map; (2) four geophysical maps; (3) geochemical maps for metamorphic heavy minerals, copper, lead and artifacts, zinc, gold, tin, beryllium, niobium, tungsten, molybdenum, titanium, cobalt, lithium, barium, antimony-arsenic-bismuth-cadmium, thorium-cerium-monazite, and limonite; (4) mineral-occurrence maps for kyanite-sillimanite-lithium-mica-feldspar-copper-lead-zinc, gold-quartz-barite-fluorite, iron-thorium-tin-niobium, and construction materials-gemstones; (5) mineral-resource potential maps for copper-lead-zinc-combined base metals, gold, tin-tungsten, beryllium-molybdenum-niobium, lithium-kyanite- sillimanitebarite, thorium (monazite)-uranium, and construction materials; and (6) mineral-production maps. The Charlotte quadrangle is mainly within the Piedmont physiographic province and extends from near the Coastal Plain on the southeast into the Blue Ridge province on the northwest for a short distance. Parts of six lithotectonic belts are present--the Blue Ridge, the Inner Piedmont, the Kings Mountain belt, the Charlotte belt, the Carolina slate belt, and the Wadesboro basin. Igneous, metamorphic, and sedimentary rocks are present and range in age from Proterozoic to Mesozoic; alluvial sediments of Quaternary age occur along rivers and larger streams. Rocks of the Blue Ridge include Middle Proterozoic granitoid gneiss intruded by Late Proterozoic granite; Late Proterozoic paragneiss, schist, and other metasedimentary and metavolcaniclastic rocks (Ashe and Grandfather Mountain Formations); Late Proterozoic and Early Cambrian metasedimentary rocks (Chilhowee Group); and Early Cambrian sedimentary rocks (Shady Dolomite). Paleozoic granites intrude the Proterozoic rocks. The Inner Piedmont contains noncarbonate metasedimentary rocks and amphibolite of medium to high metamorphic grades. These rocks are intruded by the Toluca Granite and Henderson Gneiss of Cambrian and Ordovician(?) age. The Charlotte belt consists largely of Late Proterozoic to Late Paleozoic granitic and gabbroic plutonic rocks and intervening enclaves of metasedimentary and metavolcanic rocks. The narrow Kings Mountain belt is located between the Charlotte and the Inner Piedmont belts and contains mainly Late Proterozoic metasedimentary rocks and plutonic rocks similar to those of the Charlotte belt. The Carolina slate belt, flanking the Charlotte belt on the east, contains weakly metamorphosed volcanic and sedimentary rocks. East of this belt, at the southeast corner of the quadrangle, is the Wadesboro basin, which has continental sedimentary rocks of Triassic age. Layered rocks westward from and in the Charlotte belt are complexly folded, are steeply dipping, and in the Blue Ridge and Inner Piedmont are contained within major thrust slices. Rocks of the Carolina slate belt are gently folded. Rocks of the Wadesboro basin occur in downfaulted blocks. The geophysical surveys of the Charlotte quadrangle consisted of Bouguer gravity, aeromagnetic, and aeroradioactivity surveys and used both newly obtained data and information from prior work. The gravity survey disclosed a distinct northeast-trending, northwest-decreasing gradient, which is part of the major gravity gradient that extends the length of the Appalachian Mountains. Granitic plutons of the Charlotte belt, in particular, are marked by gravity lows, and gabbro plutons, by highs. Several of the geologic belts display distinct magnetic character. The aeroradioactivity surveys showed a swath of consistently high gamma-ray intensities along the central part of the Inner Piedmont belt; these high intensities correspond to the so-called monazite belt. Oval patterns of high gamma-ray readi
Publication type Report
Publication Subtype USGS Numbered Series
Title The Conterminous United States Mineral Assessment Program; background information to accompany folio of geologic, geophysical, geochemical, mineral-occurrence, mineral-resource potential, and mineral-production maps of the Charlotte 1 degree x 2 degrees Quadrangle, North Carolina and South Carolina
Series title Circular
Series number 944
DOI 10.3133/cir944
Edition -
Year Published 1986
Language ENGLISH
Publisher U.S. Geological Survey,
Description iii, 18 p. :ill., map ;26 cm.
Google Analytic Metrics Metrics page
Additional publication details