Uranium resource assessment by the Geological Survey; methodology and plan to update the national resource base

Circular 994
By:  and 



Based on the Memorandum of Understanding {MOU) of September 20, 1984, between the U.S. Geological Survey of the U.S. Department of Interior and the Energy Information Administration {EIA) of the U.S. Department of Energy {DOE), the U.S. Geological Survey began to make estimates of the undiscovered uranium endowment of selected areas of the United States in 1985. A modified NURE {National Uranium Resource Evaluation) method will be used in place of the standard NURE method of the DOE that was used for the national assessment reported in October 1980. The modified method, here named the 'deposit-size-frequency' {DSF) method, is presented for the first time, and calculations by the two methods are compared using an illustrative example based on preliminary estimates for the first area to be evaluated under the MOU. The results demonstrate that the estimate of the endowment using the DSF method is significantly larger and more uncertain than the estimate obtained by the NURE method. We believe that the DSF method produces a more realistic estimate because the principal factor estimated in the endowment equation is disaggregated into more parts and is more closely tied to specific geologic knowledge than by the NURE method. The DSF method consists of modifying the standard NURE estimation equation, U=AxFxTxG, by replacing the factors FxT by a single factor that represents the tonnage for the total number of deposits in all size classes. Use of the DSF method requires that the size frequency of deposits in a known or control area has been established and that the relation of the size-frequency distribution of deposits to probable controlling geologic factors has been determined. Using these relations, the principal scientist {PS) first estimates the number and range of size classes and then, for each size class, estimates the lower limit, most likely value, and upper limit of the numbers of deposits in the favorable area. Once these probable estimates have been refined by elicitation of the PS, they are entered into the DSF equation, and the probability distribution of estimates of undiscovered uranium endowment is calculated using a slight modification of the program by Ford and McLaren (1980). The EIA study of the viability of the domestic uranium industry requires an annual appraisal of the U.S. uranium resource situation. During DOE's NURE Program, which was terminated in 1983, a thorough assessment of the Nation's resources was completed. A comprehensive reevaluation of uranium resource base for the entire United States is not possible for each annual appraisal. A few areas are in need of future study, however, because of new developments in either scientific knowledge, industry exploration, or both. Four geologic environments have been selected for study by the U.S. Geological Survey in the next several years: (1) surficial uranium deposits throughout the conterminous United States, (2) uranium in collapse-breccia pipes in the Grand Canyon region of Arizona, (3) uranium in Tertiary sedimentary rocks of the Northern Great Plains, and (4) uranium in metamorphic rocks of the Piedmont province in the eastern States. In addition to participation in the National uranium resource assessment, the U.S. Geological Survey will take part in activities of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development and those of the International Atomic Energy Agency.

Additional publication details

Publication type Report
Publication Subtype USGS Numbered Series
Title Uranium resource assessment by the Geological Survey; methodology and plan to update the national resource base
Series title Circular
Series number 994
DOI 10.3133/cir994
Edition -
Year Published 1987
Language ENGLISH
Publisher U.S. Geological Survey,
Description iii, 31 p. :ill., maps ;26 cm.