Pesticide concentrations in water and in suspended and bottom sediments in the New and Alamo rivers, Salton Sea Watershed, California, April 2003

Data Series 104
By: , and 



This report contains pesticide concentration data for water, and suspended and bed sediment samples collected in April 2003 from twelve sites along the New and Alamo Rivers in the Salton Sea watershed, in southeastern California. The study was done in collaboration with the California State Regional Water Quality Control Board, Colorado River Region, to assess inputs of current-use pesticides associated with water and sediment into the New and Alamo Rivers. Five sites along the New River and seven sites along the Alamo River, downstream of major agricultural drains, were selected and covered the lengths of the rivers from the international boundary to approximately 1.5 km from the river mouths. Sampling from bridges occurred at seven of the twelve sites. At these sites, streamflow measurements were taken. These same sites were also characterized for cross-stream homogeneity by measuring dissolved oxygen, pH, specific conductance, temperature, and suspended solids concentration at several vertical (depths) and horizontal (cross-stream) points across the river. Large volume water samples (200?300 L) were collected for isolation of suspended sediments by flow-through centrifugation. Water from the outflow of the flow-through centrifuge was sampled for the determination of aqueous pesticide concentrations. In addition, bottom sediments were sampled at each site. Current-use pesticides and legacy organochlorine compounds (p,p'-DDT, p,p'-DDE and p,p'-DDD) were extracted from sediments and measured via gas chromatography/mass spectrometry (GC/MS). Organic carbon and percentage of fines were also determined for suspended and bottom sediments. Cross-stream transects of dissolved constituents and suspended sediments showed that the rivers were fairly homogeneous at the sites sampled. Streamflow was higher at the outlet sites, with the Alamo River having higher flow (1,240 cfs) than the New River (798 cfs). Twelve current-use pesticides, one legacy organochlorine compound (p,p'-DDE), and the additive piperonyl butoxide were detected in water samples. Trifluralin was found in the highest concentration of all detected compounds (68.5?599 ng/L) at all sites in both rivers, except for the international boundary sites. Atrazine was also detected in high concentration (51.0?285 ng/L) at several sites. The outlet sites had among the highest numbers of pesticides detected and the international boundary sites had the lowest numbers of pesticides detected for both rivers. The numbers of pesticides detected were greater for the Alamo River than for the New River. Six current-use pesticides and two legacy organochlorines (p,p'-DDE and p,p'-DDD) were found associated with suspended and bed sediments. The DDT metabolite p,p'-DDE was detected in all suspended and bed sediments from the Alamo River, but only at two sites in the New River. Dacthal, chlorpyrifos, pendimethalin, and trifluralin were the most commonly detected current-use pesticides. Trifluralin was the compound found in the highest concentrations in suspended (14.5?120 ng/g) and bed (1.9?9.0 ng/g) sediments. The sites along the Alamo River had more frequent detections of pesticides in suspended and bed sediments when compared with the New River sites. The greatest number of pesticides that were detected in suspended sediments (seven) were in the samples from the Sinclair Road and Harris Road sites. For bottom sediments, the Alamo River outlet site had the greatest number of pesticide detections (eight).
Publication type Report
Publication Subtype USGS Numbered Series
Title Pesticide concentrations in water and in suspended and bottom sediments in the New and Alamo rivers, Salton Sea Watershed, California, April 2003
Series title Data Series
Series number 104
DOI 10.3133/ds104
Edition Online only
Year Published 2004
Language ENGLISH
Description 20 p.
Online Only (Y/N) Y
Google Analytic Metrics Metrics page
Additional publication details