Ground-water quality data in the Southern Sacramento Valley, California, 2005 — Results from the California GAMA Program

Data Series 285
Prepared in cooperation with the California State Water Resources Control Board
By: , and 

Links

Abstract

Ground-water quality in the approximately 2,100 square-mile Southern Sacramento Valley study unit (SSACV) was investigated from March to June 2005 as part of the Statewide Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. This study was designed to provide a spatially unbiased assessment of raw ground-water quality within SSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 83 wells in Placer, Sacramento, Solano, Sutter, and Yolo Counties. Sixty-seven of the wells were selected using a randomized grid-based method to provide statistical representation of the study area. Sixteen of the wells were sampled to evaluate changes in water chemistry along ground-water flow paths. Four additional samples were collected at one of the wells to evaluate water-quality changes with depth.

The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL).

The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, pharmaceutical compounds, and wastewater-indicator constituents), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water.

Quality-control samples (blanks, replicates, matrix spikes) were collected at ten percent of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control data resulted in censoring of less than 0.03 percent of the analyses of ground-water samples.

This study did not evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Health Services (CADHS) (Maximum Contaminant Levels [MCLs], notification levels [NLs], or lifetime health advisories [HA-Ls]) and thresholds established for aesthetic concerns (Secondary Maximum Contaminant Levels [SMCLs]).

All wells were sampled for organic constituents and selected general water quality parameters; subsets of wells were sampled for inorganic constituents, nutrients, and radioactive constituents. Volatile organic compounds were detected in 49 out of 83 wells sampled and pesticides were detected in 34 out of 82 wells; all detections were below health-based thresholds, with the exception of 1 detection of 1,2,3-trichloropropane above a NL. Of the 43 wells sampled for trace elements, 27 had no detections of a trace element above a health-based threshold and 16 had at least one detection above. Of the 18 trace elements with health-based thresholds, 3 (arsenic, barium, and boron) were detected at concentrations higher an MCL. Of the 43 wells sampled for nitrate, only 1 well had a detection above the MCL. Twenty wells were sampled for radioactive constituents; only 1 (radon-222) was measured at activities higher than the proposed MCL. Radon-222 was detected below the threshold in 7 wells and above the 
threshold in 13 wells.

SMCLs have been established for nine constituents or parameters analyzed in SSACV. Six were measured at levels higher than an SMCL: chloride, iron, manganese, pH, specific conductance, and total dissolved solids. Chloride, iron, manganese, pH, and total dissolved solids were measured in 43 wells: 27 wells had no measurements above a threshold and 16 wells had a measurement above a threshold. Specific conductance was measured in 83 wells. In 68 wells, specific conductance was measured lower than the threshold and in 15 wells it was measured above the threshold.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Ground-water quality data in the Southern Sacramento Valley, California, 2005 — Results from the California GAMA Program
Series title Data Series
Series number 285
DOI 10.3133/ds285
Edition Version 1.0: February 2008; Version 1.1: August 2018
Year Published 2008
Language English
Publisher U.S. Geological Survey
Contributing office(s) California Water Science Center
Description HTML Document
Time Range Start 2005-03-01
Time Range End 2005-06-30
Country United States
State California
Other Geospatial southern Sacramento Valley
Google Analytic Metrics Metrics page
Additional publication details