Temporal and Spatial Distribution of Endangered Juvenile Lost River and Shortnose Suckers in Relation to Environmental Variables in Upper Klamath Lake, Oregon: 2008 Annual Data Summary

Open-File Report 2010-1051
By:  and 

Links

Abstract

Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were listed as endangered in 1988 for a variety of reasons including apparent recruitment failure. Upper Klamath Lake, Oregon, and its tributaries are considered the most critical remaining habitat for these two species. Age-0 suckers are often abundant in Upper Klamath Lake throughout the summer months, but catches decline dramatically between late August and early September each year and age-1 and older sub-adult suckers are rare. These rapid declines in catch rates and a lack of substantial recruitment into adult sucker populations in recent years suggests sucker populations experience high mortality between their first summer and first spawn. A lack of access to, or abundance of, optimal rearing habitat may exacerbate juvenile sucker mortality or restrict juvenile growth or development. Summer age-0 sucker habitat use and distribution has been studied extensively, but many uncertainties remain about age-1 and older juvenile habitat use, distribution, and movement patterns within Upper Klamath Lake. We designed a study to examine seasonal changes in distribution of age-1 suckers in Upper Klamath Lake as they relate to depth and water quality. In this document, which meets our annual data summary and reporting obligations, we discuss the results of our second annual spring and summer sampling effort. Catch data collected in 2007 and 2008 indicate seasonal changes in age-1 and older juvenile sucker habitat use coincident with changes in water quality, which were previously undocumented. In both years during April and May, age-1 and older juvenile suckers were found in shallow water environments. Then, as water temperatures began to warm throughout Upper Klamath Lake in June, age-1 and older juvenile suckers primarily were captured along the western shore in some of the deepest available environments. Following a dramatic decrease in dissolved oxygen concentrations in Eagle Ridge Trench, juvenile suckers were no longer found along the western shore but were captured throughout the rest of Upper Klamath Lake. When dissolved oxygen concentrations were 4 milligrams per liter or greater along the western shore, juvenile sucker captures were again concentrated in that area. Although this pattern indicates that low dissolved oxygen concentration or another related water-quality limitation may force juvenile suckers to leave the western shore, it is unclear as to why age-1 and older juveniles might be attracted to the area in the first place. Understanding this apparent behavior could be important to managing habitat for these species. In this data summary, we also describe the distribution of catches of age-0 suckers and other fishes in Upper Klamath Lake. These data corroborate previous studies that describe age-0 sucker habitat as shallow relative to depths available in Upper Klamath Lake. In this study, we did not seek, nor find additional clarification on age-0 sucker habitat use and distribution in Upper Klamath Lake. Our brief description of the distribution and abundance of all other fish species caught provides a context in which to assess the rarity of juvenile suckers within the fish community of Upper Klamath Lake.
Publication type Report
Publication Subtype USGS Numbered Series
Title Temporal and Spatial Distribution of Endangered Juvenile Lost River and Shortnose Suckers in Relation to Environmental Variables in Upper Klamath Lake, Oregon: 2008 Annual Data Summary
Series title Open-File Report
Series number 2010-1051
DOI 10.3133/ofr20101051
Edition -
Year Published 2010
Language ENGLISH
Publisher U.S. Geological Survey
Contributing office(s) Western Fisheries Research Center
Description vi, 36 p.
Online Only (Y/N) N
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details