Postwildfire debris flows hazard assessment for the area burned by the 2011 Track Fire, northeastern New Mexico and southeastern Colorado

Open-File Report 2011-1257
By: , and 



In June 2011, the Track Fire burned 113 square kilometers in Colfax County, northeastern New Mexico, and Las Animas County, southeastern Colorado, including the upper watersheds of Chicorica and Raton Creeks. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from basins burned by the Track Fire. A pair of empirical hazard-assessment models developed using data from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volume of debris flows at the outlets of selected drainage basins within the burned area. The models incorporate measures of burn severity, topography, soils, and storm rainfall to estimate the probability and volume of post-fire debris flows following the fire. In response to a design storm of 38 millimeters of rain in 30 minutes (10-year recurrence-interval), the probability of debris flow estimated for basins burned by the Track fire ranged between 2 and 97 percent, with probabilities greater than 80 percent identified for the majority of the tributary basins to Raton Creek in Railroad Canyon; six basins that flow into Lake Maloya, including the Segerstrom Creek and Swachheim Creek basins; two tributary basins to Sugarite Canyon, and an unnamed basin on the eastern flank of the burned area. Estimated debris-flow volumes ranged from 30 cubic meters to greater than 100,000 cubic meters. The largest volumes (greater than 100,000 cubic meters) were estimated for Segerstrom Creek and Swachheim Creek basins, which drain into Lake Maloya. The Combined Relative Debris-Flow Hazard Ranking identifies the Segerstrom Creek and Swachheim Creek basins as having the highest probability of producing the largest debris flows. This finding indicates the greatest post-fire debris-flow impacts may be expected to Lake Maloya. In addition, Interstate Highway 25, Raton Creek and the rail line in Railroad Canyon, County road A-27, and State Highway 526 in Sugarite Canyon may also be affected where they cross drainages downstream from recently burned basins. Although this assessment indicates that a rather large debris flow (approximately 42,000 cubic meters) may be generated from the basin above the City of Raton (basin 9) in response to the design storm, the probability of such an event is relatively low (approximately 10 percent). Additional assessment is necessary to determine if the estimated volume of material is sufficient to travel into the City of Raton. In addition, even small debris flows may affect structures at or downstream from basin outlets and increase the threat of flooding downstream by damaging or blocking flood mitigation structures. The maps presented here may be used to prioritize areas where erosion mitigation or other protective measures may be necessary within a 2- to 3-year window of vulnerability following the Track Fire.

Study Area

Additional publication details

Publication type Report
Publication Subtype USGS Numbered Series
Title Postwildfire debris flows hazard assessment for the area burned by the 2011 Track Fire, northeastern New Mexico and southeastern Colorado
Series title Open-File Report
Series number 2011-1257
DOI 10.3133/ofr20111257
Year Published 2011
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) New Mexico Water Science Center
Description iv, 9 p.; Plate 1: 32.34 inches x 21.13 inches; Plate 2: 31.65 inches x 20.68 inches; Plate 3: 32.34 inches x 21.13 inches
Country United States
State Colorado;New Mexico
Datum UTM Zone 13
Projection NAD 1983
Online Only (Y/N) Y
Additional Online Files (Y/N) Y
Google Analytic Metrics Metrics page
Additional metadata about this publication, not found in other parts of the page is in this table